Collaborative Research: SEI: Computational Methods for Kinship Reconstruction

合作研究:SEI:亲属关系重建的计算方法

基本信息

项目摘要

New technologies for collecting genotypic data from natural populations open the possibilities of investigating many fundamental biological phenomena, including behavior, mating systems, heritabilities of adaptive traits, kin selection, and dispersal patterns. Mining the emerging genotype data for ecological and evolutionary information is one of the most challenging problems in modern biology. Yet full utilization of the genotypic data is only possible if statistical and computational approaches keep pace with our ability to sample organisms and obtain their genotypes. The power and potential of genotypic information often rests in our ability to reconstruct genealogical relationships among individuals. Current computational methods for kinship (lower order pedigree) reconstruction have been developed mainly in the context of human populations. Natural populations pose unique computational and scientific challenges for genetic research: data collection is often limited to a demographic subgroup, such as juveniles; test data for the population under study is rarely available; the number of used genetic markers is relatively small, and typical family sizes can be orders of magnitude larger than in humans. Almost all currently available kinship reconstruction methods are statistical and thus are sensitive to noisy and incomplete data and require a priori knowledge about various parameter distributions, a difficult condition to satisfy in natural populations. The goal of the proposed research is to develop a robust computational method for reconstructing kinship relationships from microsatellite genetic data. The proposed method uses the fundamental genetic laws of inheritance to limit the genetic configurations of possible kinship relationships and powerful optimization techniques to find among those the most parsimonious. The resulting familial reconstruction method requires sampling a minimal number of generations, uses few assumptions about the structure of the data, and relies on little prior knowledge about the sampled population. The diverse tasks of this project include biological modeling, algorithm design and implementation, optimization integration, and experimental validation, many of which may be of use beyond the scope of genetics. The research team will leverage diverse expertise of its members in molecular genetics, mathematical modeling, experimental and theoretical computer sciences to develop accurate and effective methods for familial relationships reconstruction. The proposed interdisciplinary research will have broader impacts on diverse research communities. Improved methods of analysis and inference of kinship relationships open the door to asking new biological questions. The combined advantages of the proposed approach would be applicable to and useful not only for population biology but to various areas of the life sciences, including conservation and management of endangered species, animal behavior, evolutionary genetics, human genealogy, forensics, and epidemiology, any time familial relationships must be inferred from genetic data. The research and software resulting from the proposed project will be disseminated both in computational and biological communities and enhanced by cross-disciplinary training activities. The diverse scientific tasks that comprised the proposed research are suitable for a wide range of students in biology and computer science and will serve to train a new generation of interdisciplinary scientists.
从自然群体中收集基因型数据的新技术为研究许多基本生物现象提供了可能性,包括行为、交配系统、适应性特征的遗传力、亲缘选择和扩散模式。挖掘新兴基因型数据以获取生态和进化信息是现代生物学中最具挑战性的问题之一。然而,只有统计和计算方法与我们对生物体取样并获得其基因型的能力保持同步,基因型数据的充分利用才有可能。基因型信息的力量和潜力通常取决于我们重建个体之间谱系关系的能力。当前用于亲属关系(低阶谱系)重建的计算方法主要是在人类群体的背景下开发的。自然种群给基因研究带来了独特的计算和科学挑战:数据收集通常仅限于人口统计亚组,例如青少年;所研究人群的测试数据很少;使用的遗传标记数量相对较少,典型的家族规模可能比人类大几个数量级。目前几乎所有可用的亲属关系重建方法都是​​统计的,因此对噪声和不完整的数据敏感,并且需要有关各种参数分布的先验知识,这是自然群体中很难满足的条件。拟议研究的目标是开发一种强大的计算方法,用于根据微卫星遗传数据重建亲属关系。所提出的方法使用遗传的基本遗传法则来限制可能的亲属关系的遗传配置,并使用强大的优化技术来找到最简约的遗传配置。 由此产生的家族重建方法需要对最少的代数进行采样,对数据结构使用很少的假设,并且几乎不依赖于有关采样群体的先验知识。该项目的不同任务包括生物建模、算法设计和实现、优化集成和实验验证,其中许多任务可能超出遗传学的范围。研究团队将利用其成员在分子遗传学、数学建模、实验和理论计算机科学方面的多样化专业知识,开发准确有效的家庭关系重建方法。 拟议的跨学科研究将对不同的研究界产生更广泛的影响。 亲属关系分析和推断方法的改进为提出新的生物学问题打开了大门。所提出方法的综合优势不仅适用于群体生物学,而且适用于生命科学的各个领域,包括濒危物种的保护和管理、动物行为、进化遗传学、人类谱系学、法医学和流行病学、任何时间家族关系必须从遗传数据中推断出来。拟议项目产生的研究和软件将在计算和生物界传播,并通过跨学科培训活动得到加强。 拟议研究中包含的多样化科学任务适合生物学和计算机科学领域的广大学生,并将有助于培养新一代跨学科科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wanpracha Chaovalitwongse其他文献

Wanpracha Chaovalitwongse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wanpracha Chaovalitwongse', 18)}}的其他基金

Collaborative Research: Decision Model for Patient-Specific Motion Management in Radiation Therapy Planning
协作研究:放射治疗计划中患者特定运动管理的决策模型
  • 批准号:
    1742032
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnoses of Brain Diseases
神经影像功能连接的网络优化用于脑部疾病的鉴别诊断
  • 批准号:
    1742031
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Relationship of Cortical Field Anatomy to Network Vulnerability and Behavior
NCS-FO:协作研究:皮质场解剖与网络漏洞和行为的关系
  • 批准号:
    1734913
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Decision Model for Patient-Specific Motion Management in Radiation Therapy Planning
协作研究:放射治疗计划中患者特定运动管理的决策模型
  • 批准号:
    1536407
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnoses of Brain Diseases
神经影像功能连接的网络优化用于脑部疾病的鉴别诊断
  • 批准号:
    1333841
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
  • 批准号:
    1231132
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Scalable Kinship Inference in Wild Populations Across Years and Generations
III:媒介:合作研究:跨年、跨代野生种群的可扩展亲缘关系推断
  • 批准号:
    1064752
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Novel Optimization Methods for Cooperative Data Mining with Healthcare and Biotechnology Applications
职业:医疗保健和生物技术应用中协作数据挖掘的新颖优化方法
  • 批准号:
    1219639
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI:Small:Collaborative Proposal: Computational Framework of Robust Intelligent System for Mental State Identification and Human Performance Prediction with Biofeedback
RI:Small:协作提案:利用生物反馈进行精神状态识别和人类表现预测的鲁棒智能系统计算框架
  • 批准号:
    1219638
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI:Small:Collaborative Proposal: Computational Framework of Robust Intelligent System for Mental State Identification and Human Performance Prediction with Biofeedback
RI:Small:协作提案:利用生物反馈进行精神状态识别和人类表现预测的鲁棒智能系统计算框架
  • 批准号:
    0916580
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

高选择性MOF基人工SEI膜可控构筑及其在实用化锂硫电池中的作用机制研究
  • 批准号:
    52362032
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于预冷电解液的锂电容预锂化热失控抑制及热耦合SEI成膜机理研究
  • 批准号:
    52307249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锂硫电池用交联聚合物人工SEI的构筑及保护机制研究
  • 批准号:
    22379047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锂电池SEI的等温电化学形核与生长机制研究
  • 批准号:
    22379014
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锌金属负极双层结构人工SEI的可控构筑及锌枝晶抑制机制研究
  • 批准号:
    22209206
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond
EAGER:协作研究:用于先进锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层
  • 批准号:
    1748279
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond
EAGER:协作研究:用于高级锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层
  • 批准号:
    1748414
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SEI: Collaborative Research: Discovering Unexpected Planets and Other Astronomical Oddities
SEI:合作研究:发现意想不到的行星和其他天文奇异现象
  • 批准号:
    0713273
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SEI: Collaborative Research: Discovering Unexpected Planets and Other Astronomical Oddities
SEI:合作研究:发现意想不到的行星和其他天文奇异现象
  • 批准号:
    0713259
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SEI: Collaborative Research: Endoscopic Multimedia Information System (EMIS)
SEI:合作研究:内窥镜多媒体信息系统(EMIS)
  • 批准号:
    0653097
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了