Mathematical methods in the kinetic theory of plasmas and gravitating systems

等离子体和引力系统动力学理论中的数学方法

基本信息

  • 批准号:
    0604946
  • 负责人:
  • 金额:
    $ 10.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

Proposal ID: 0604946PI: Lancellotti, CarloInstitution: CUNY Staten IslandTitle: Mathematical methods in the kinetic theory of plasmas and gravitating systemsAbstractThis project investigates some open mathematical problems in the kinetic theory of plasmas and gravitating systems. The kinetic equations that describe systems of particles interacting via gravitational (Newton) or electrostatic (Coulomb) forces are crucially important in astrophysics and plasma physics, but they have been quite impervious to mathematical analysis. The investigation builds on some recent breakthroughs by the PI and follows two lines of attack:1) The mathematical properties of spatially homogeneous equations of the (linear or nonlinear) Fokker-Planck type are being studied via a master equation approach, in which a kinetic equation is approximated as the infinite-particle limit of a linear Kolmogorov equation for a carefully selected $N$-body stochastic process. This latter replaces the (much more complex) underlying Hamiltonian dynamics of the ``physical'' $N$-body system and makes it possible to extract new information about existence of solutions to a kinetic equation, their rate of decay to equilibrium etc. 2) This project also explores the application of orbit-averaging methods to the spatially inhomogeneous Vlasov-Landau-Poisson equations that arise in astrophysics and plasma physics. These methods take advantage of different time scales present in certain physical systems in order to greatly reduce the number of independent variables and thus facilitate the mathematical analysis of the equations.Kinetic equations describe the evolution of many-body systems such as gases, plasmas and clusters of stars. Equations of this type play an essential role in many applications, ranging from gas dynamics to fusion plasma, from astrophysics to physical chemistry, from traffic flow to semiconductors. This research project focuses on those situations in which the particles in the system interact via long-range forces, as is the case for ionized gases (plasmas) and for stars. In these cases, the mathematical analysisis greatly complicated by the fact that long-range forces allow many particles to interact with each other at the same time, whereas ordinary gases are driven just by "binary" (one-on-one) collisions between pairs of particles. The main goal of the project is to obtain precise mathematical estimates of the behavior of solutions to these equations. For instance, when studying a laboratory plasma it is very desirable to know that the mathematical model being used has well-defined solutions, and also to estimate how quickly external disturbances will fade away etc. Beside their intrinsic mathematical value, results of this type also aid the development (and support the validity) of the numerical simulations that play an important role in the study of fusion reactors, of the earth's magnetosphere, of globular clusters of stars and many other applications.
提案编号:0604946PI:兰切洛蒂,卡洛机构:纽约市立大学史泰登岛分校标题:等离子体和引力系统动力学理论中的数学方法摘要该项目研究等离子体和引力系统动力学理论中的一些开放数学问题。 描述通过引力(牛顿)或静电(库仑)力相互作用的粒子系统的动力学方程在天体物理学和等离子体物理学中至关重要,但它们一直不受数学分析的影响。这项研究建立在 PI 最近取得的一些突破的基础上,并遵循两条路线:1) 通过主方程方法研究(线性或非线性)Fokker-Planck 类型的空间齐次方程的数学特性,其中动力学方程被近似为精心选择的 $N$ 体随机过程的线性柯尔莫哥洛夫方程的无限粒子极限。 后者取代了“物理”$N$-体系统的(更复杂的)底层哈密顿动力学,并使得提取有关动力学方程解的存在性、其平衡衰减率等的新信息成为可能。 2) 该项目还探索了轨道平均方法在天体物理学和等离子体物理学中出现的空间非均匀 Vlasov-Landau-Poisson 方程中的应用。 这些方法利用某些物理系统中存在的不同时间尺度,以大大减少自变量的数量,从而促进方程的数学分析。动力学方程描述了多体系统(例如气体、等离子体和团簇)的演化的星星。此类方程在许多应用中发挥着重要作用,从气体动力学到聚变等离子体,从天体物理学到物理化学,从交通流到半导体。 该研究项目重点关注系统中的粒子通过长程力相互作用的情况,例如电离气体(等离子体)和恒星的情况。 在这些情况下,数学分析变得非常复杂,因为长程力允许许多粒子同时相互作用,而普通气体仅由粒子对之间的“二元”(一对一)碰撞驱动的颗粒。该项目的主要目标是获得这些方程解的行为的精确数学估计。 例如,在研究实验室等离子体时,非常希望知道所使用的数学模型具有明确定义的解决方案,并且还希望估计外部干扰消失的速度等。除了其内在的数学价值外,此类结果还帮助数值模拟的发展(并支持其有效性),这些模拟在聚变反应堆、地球磁层、恒星球状星团和许多其他应用的研究中发挥着重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlo Lancellotti其他文献

Carlo Lancellotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlo Lancellotti', 18)}}的其他基金

Strengthening the Mathematics and Science Teacher Pathways in the Post-Pandemic Environment
加强大流行后环境中的数学和科学教师的途径
  • 批准号:
    2344918
  • 财政年份:
    2024
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Continuing Grant
Mathematical foundations of plasma kinetic theory
等离子体动力学理论的数学基础
  • 批准号:
    1107307
  • 财政年份:
    2011
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
  • 批准号:
    0318532
  • 财政年份:
    2002
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
  • 批准号:
    0207339
  • 财政年份:
    2002
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant

相似国自然基金

癌症耐药复发动力学的数学理论与方法
  • 批准号:
    12331018
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
具变分结构的几类数学物理方程驻波解动力学性态研究的非经典方法
  • 批准号:
    11971485
  • 批准年份:
    2019
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
旋转偶极化旋量玻色爱因斯坦凝聚体的基态与动力学的数学理论及其相关数值方法研究
  • 批准号:
    11971335
  • 批准年份:
    2019
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
量子化学中非绝热问题的数学分析和计算方法
  • 批准号:
    11801016
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
怪波的数学理论及其在非线性系统中的应用
  • 批准号:
    11731014
  • 批准年份:
    2017
  • 资助金额:
    250.0 万元
  • 项目类别:
    重点项目

相似海外基金

Pyruvate Dehydrogenase Complex Activation as a Strategy to Ameliorate Metabolic Disease
丙酮酸脱氢酶复合物激活作为改善代谢疾病的策略
  • 批准号:
    10795189
  • 财政年份:
    2023
  • 资助金额:
    $ 10.36万
  • 项目类别:
Disentangling specific and off-target signals in tau PET imaging
解开 tau PET 成像中的特定信号和脱靶信号
  • 批准号:
    10461941
  • 财政年份:
    2021
  • 资助金额:
    $ 10.36万
  • 项目类别:
Disentangling specific and off-target signals in tau PET imaging
解开 tau PET 成像中的特定信号和脱靶信号
  • 批准号:
    10303460
  • 财政年份:
    2021
  • 资助金额:
    $ 10.36万
  • 项目类别:
Structure and Interactions of Conformational Intermediates in gamma-D Crystallin Aggregation, and Their Targeting for Cataract Prevention
γ-D 晶状体蛋白聚集中构象中间体的结构和相互作用及其预防白内障的靶向作用
  • 批准号:
    10401812
  • 财政年份:
    2020
  • 资助金额:
    $ 10.36万
  • 项目类别:
Structure and Interactions of Conformational Intermediates in gamma-D Crystallin Aggregation, and Their Targeting for Cataract Prevention
γ-D 晶状体蛋白聚集中构象中间体的结构和相互作用及其预防白内障的靶向作用
  • 批准号:
    10608130
  • 财政年份:
    2020
  • 资助金额:
    $ 10.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了