Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems

随机控制、不完全市场和随机极限定理中的问题

基本信息

项目摘要

The proposed project consists of four parts: (1) Solving the optimal stopping problems associated with several quickest detection problems for processes that jump. The goal is to provide novel optimization techniques for such processes and study properties of the corresponding variational inequalities. (2) Developing stochastic control techniques to study the problem of how an individual (retiree) should invest her wealth in a risky financial market in order to minimize the probability that she outlives her wealth, minimizes her life-time shortfall. In this case, the aim is to develop the earlier results of L-infinity control and to analyze the associated variational equalities for more realistic market models. (3) Developing new pricing principles for incomplete markets, with the objective of providing new insights into pricing and hedging derivative securities in incomplete markets. This part also includes developing solutions of impulse and singular control problems for any one-dimensional diffusion (with decision making delay). (4) Developing stochastic limit theorems for processes with semi-Markov switching to elucidate the impact of common characteristics of the investors on the aggregate quantities like the market prices.Optimal stopping problems have applications in the areas of seismology, machine monitoring, finance, insurance, health surveillance among others. Improved stochastic control techniques may inform the public, financial planners and legislators about the risk of ruin in retirement. This work will benefit individuals' decision making on important financial matters they face during their lives: How much to invest in mutual funds; how much insurance one should buy; whether it is a good time to borrow to invest in the stock market and how much one should borrow; when it is best to declare bankruptcy; when one should retire, etc. The development of new pricing principles provides better pricing mechanisms for derivative products in the markets, which will benefit the financial institutions which are at the center of the economy. The results in the final section of this part will help the management make better decisions for the welfare of their companies which will benefit the nation since available resources will be used more efficiently. The final objective of the project will obtain insights into the market dynamics by understanding the price formation from typical behavioral qualities of investors. This is important in creating good financial models that benefit economic forecast, investment and policy decisions.
拟议的项目由四个部分组成:(1)解决与跳跃过程的几个最快检测问题相关的最佳停止问题。目标是为此类过程提供新颖的优化技术并研究相应变分不等式的性质。 (2)开发随机控制技术来研究个人(退休人员)如何将其财富投资于有风险的金融市场的问题,以尽量减少她耗尽财富的可能性,尽量减少她一生的损失。 在本例中,目的是开发 L-无穷大控制的早期结果,并分析相关的变分方程以获得更现实的市场模型。 (3)针对不完全市场制定新的定价原则,旨在为不完全市场中的衍生证券定价和对冲提供新的见解。 这部分还包括为任何一维扩散(具有决策延迟)开发脉冲和奇异控制问题的解决方案。 (4) 开发半马尔可夫切换过程的随机极限定理,以阐明投资者的共同特征对市场价格等总量的影响。最优停止问题在地震学、机器监控、金融、保险等领域有应用、健康监测等。 改进的随机控制技术可以让公众、财务规划者和立法者了解退休后破产的风险。 这项工作将有利于个人在一生中面临的重要财务问题上做出决策:投资多少共同基金;应该购买多少保险;现在是否是借钱投资股市的好时机以及应该借多少钱;什么时候是最好宣布破产的时候;新定价原则的制定为市场上的衍生产品提供了更好的定价机制,这将有利于处于经济中心的金融机构。本部分最后一部分的结果将帮助管理层为公司的福利做出更好的决策,这将造福国家,因为可用资源将得到更有效的利用。该项目的最终目标将通过了解投资者典型行为品质的价格形成来深入了解市场动态。这对于创建有利于经济预测、投资和政策决策的良好金融模型非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erhan Bayraktar其他文献

Continuity of utility maximization under weak convergence
弱收敛下效用最大化的连续性
  • DOI:
    10.2139/ssrn.3278294
  • 发表时间:
    2018-11-04
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Y. Dolinsky;Jia Guo
  • 通讯作者:
    Jia Guo
Stability of exponential utility maximization with respect to market perturbations
指数效用最大化相对于市场扰动的稳定性
On Time-Inconsistency in Mean Field Games
论平均场博弈中的时间不一致
  • DOI:
    10.48550/arxiv.2312.07770
  • 发表时间:
    2023-12-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erhan Bayraktar;Zhenhua Wang
  • 通讯作者:
    Zhenhua Wang
Stochastic Perron for stochastic target games
用于随机目标游戏的 Stochastic Perron
  • DOI:
    10.1214/15-aap1112
  • 发表时间:
    2014-08-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erhan Bayraktar;Jiaqi Li
  • 通讯作者:
    Jiaqi Li
On the Controller-Stopper Problems with Controlled Jumps
关于受控跳跃的控制器-制动器问题
  • DOI:
    10.1007/s00245-017-9463-8
  • 发表时间:
    2016-09-13
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Erhan Bayraktar;Jiaqi Li
  • 通讯作者:
    Jiaqi Li

Erhan Bayraktar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erhan Bayraktar', 18)}}的其他基金

New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
  • 批准号:
    2106556
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
  • 批准号:
    1613170
  • 财政年份:
    2016
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
  • 批准号:
    1108593
  • 财政年份:
    2011
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
  • 批准号:
    1118673
  • 财政年份:
    2011
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
  • 批准号:
    0955463
  • 财政年份:
    2010
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
  • 批准号:
    0906257
  • 财政年份:
    2009
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant

相似国自然基金

反射型耦合正倒向随机微分方程及其控制问题
  • 批准号:
    12371443
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于行为偏好的保险需求与投资消费随机最优控制问题研究
  • 批准号:
    12371478
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Hawkes传染金融保险模型下若干随机控制问题的研究
  • 批准号:
    12371472
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
保险中随机最优控制问题的数值算法及收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
噪声干扰下蚊媒疾病模型动力学及随机(拟)最优控制问题的研究
  • 批准号:
    12261029
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Research on Applications of Advanced Stochastic Control and Game Theory to Trade Execution Problems in Financial Markets
高级随机控制和博弈论在金融市场交易执行问题中的应用研究
  • 批准号:
    22K01573
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了