Field-Theoretic Polymer Simulations: Fundamentals and Applications

场论聚合物模拟:基础知识和应用

基本信息

  • 批准号:
    0603710
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This award supports computational and theoretical research and education in the area of polymer simulation. This project will build on the recent development by the PI and co-workers of the "field-theoretic simulation" (FTS) method, enabling numerical investigations of field theory models of polymers, complex fluids, and soft materials without resorting to the mean-field approximation. The proposed research encompasses both fundamental and applied components.. Foundations and extensions of the FTS method. This research thrust will include development of improved numerical schemes for time integration of the stochastic "complex Langevin" equations used to implement potential field updates. We also propose to develop a new "ground state-FTS" technique that should dramatically accelerate simulations of strongly overlapping polymer solutions (neutral and charged) in the semi-dilute and concentrated regimes.. Numerical renormalization group theory. We propose to implement pseudospectral numerical RG transformations in tandem with complex Langevin simulations of polymer field theories. This will facilitate the isolation of lattice cutoff effects and enable systematic coarse-graining of polymer solution models. The PI envisions applications to block copolymers in selective solvents.. Hybrid particle-field simulations. We propose to develop a new class of simulations for treating nanoparticles or colloids embedded in structured polymer fluids. The particles are treated as "cavities" in the fluid fields and the particle coordinates are retained along with the fluid field variables.. Defects in confined copolymer films. Translational and bond-orientational order will be examined in FTS simulations of block copolymer films with perimeter boundary conditions. The results will be used to assess the efficacy of grapho-epitaxy for creating defect-free copolymer films that can be used in ultra-high density patterning of advanced electronic, optical, and magnetic devices. The proposed research will closely couple with an experimental program underway in the laboratory of Edward J. Kramer at UCSB.The PI will continue in his tradition of effective graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials/polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained under the proposed project will be further leveraged through the Complex Fluids Design Consortium (CFDC) at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.NON-TECHNICAL SUMMARY:This award supports computational and theoretical research and education in the area of polymer science using computers to simulate polymer materials and polymer-related phenomena. The PI plans to continue his work on fundamental theoretical advances and new algorithms aimed at extending a simulation method he developed and at developing new simulation methods for inhomogeneous polymer materials, complex fluids, and soft materials. These methods are needed to handle essential physics that arises across diverse length and time scales in these materials and often makes reliable computer simulation difficult. In an effort coupled to experiment, the PI plans to apply these newly developed advanced simulation methods to thin films of block copolymers and to investigate a promising experimental technique for creating nearly perfect copolymer films that can be used as a template to synthesize inorganic nanowires, nanodots, and other nanoscale structures. The PI will continue in his tradition of effective graduate and post-doctoral training in theoretical and computational polymer science. A particular focus will be to expose students and post-docs with classical physics training to broader soft materials/polymer science disciplines through a close coupling with experimental groups at UCSB in chemical engineering, materials, and chemistry. The fundamental understanding gained under the proposed project will be further leveraged through the Complex Fluids Design Consortium (CFDC) at UCSB, an industry-national lab-academic partnership that is addressing the computational design of commercial polymer and complex fluid formulations.
技术摘要:该奖项支持聚合物模拟领域的计算和理论研究及教育。该项目将建立在PI和同事最近开发的“场论模拟”(FTS)方法的基础上,能够对聚合物、复杂流体和软材料的场论模型进行数值研究,而无需诉诸平均方法。场近似。拟议的研究涵盖基础和应用部分。FTS 方法的基础和扩展。这项研究的重点将包括开发用于实现势场更新的随机“复朗之万”方程时间积分的改进数值方案。我们还建议开发一种新的“基态 FTS”技术,该技术应显着加速半稀释和浓缩状态下强重叠聚合物溶液(中性和带电)的模拟。数值重正化群理论。我们建议将伪谱数值 RG 变换与聚合物场论的复杂 Langevin 模拟结合起来。这将有助于隔离晶格截止效应,并实现聚合物溶液模型的系统粗粒度化。 PI 设想将其应用于选择性溶剂中的嵌段共聚物。混合粒子场模拟。我们建议开发一类新的模拟来处理嵌入结构化聚合物流体中的纳米颗粒或胶体。颗粒被视为流体场中的“空腔”,颗粒坐标与流体场变量一起保留。受限共聚物薄膜中的缺陷。将在具有周边边界条件的嵌段共聚物薄膜的 FTS 模拟中检查平移和键取向顺序。研究结果将用于评估图形外延在创建无缺陷共聚物薄膜方面的功效,该薄膜可用于先进电子、光学和磁性设备的超高密度图案化。拟议的研究将与加州大学圣巴巴拉分校 Edward J. Kramer 实验室正在进行的实验项目密切结合。PI 将继续其在理论和计算聚合物科学领域进行有效的研究生和博士后培训的传统。特别重点是通过与加州大学圣巴巴拉分校化学工程、材料和化学实验小组的密切合作,让受过经典物理训练的学生和博士后接触更广泛的软材料/聚合物科学学科。在拟议项目中获得的基本理解将通过 UCSB 的复杂流体设计联盟 (CFDC) 得到进一步利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于解决商业聚合物和复杂流体配方的计算设计问题。 非技术摘要:该奖项支持使用计算机模拟聚合物材料和聚合物相关现象的聚合物科学领域的计算和理论研究及教育。 PI 计划继续致力于基础理论进展和新算法的研究,旨在扩展他开发的模拟方法,并为非均匀聚合物材料、复杂流体和软材料开发新的模拟方法。 这些方法需要处理这些材料中不同长度和时间尺度上出现的基本物理现象,并且通常使可靠的计算机模拟变得困难。 在与实验相结合的努力中,PI计划将这些新开发的先进模拟方法应用于嵌段共聚物薄膜,并研究一种有前景的实验技术,用于创建近乎完美的共聚物薄膜,该薄膜可用作合成无机纳米线、纳米点的模板和其他纳米级结构。 PI 将继续其在理论和计算聚合物科学领域进行有效的研究生和博士后培训的传统。特别重点是通过与加州大学圣巴巴拉分校化学工程、材料和化学实验小组的密切合作,让受过经典物理训练的学生和博士后接触更广泛的软材料/聚合物科学学科。在拟议项目中获得的基本理解将通过加州大学圣巴巴拉分校的复杂流体设计联盟 (CFDC) 得到进一步利用,该联盟是一个行业-国家实验室-学术合作伙伴关系,致力于解决商业聚合物和复杂流体配方的计算设计问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glenn Fredrickson其他文献

Glenn Fredrickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glenn Fredrickson', 18)}}的其他基金

Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
  • 批准号:
    2104255
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Field-Theoretic Simulations: Coherent States and Particle-Field Linkages
场论模拟:相干态和粒子场联系
  • 批准号:
    2104255
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
  • 批准号:
    1822215
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Computationally-Driven Design of Advanced Block Polymer Nanomaterials
DMREF:协作研究:先进嵌段聚合物纳米材料的计算驱动设计
  • 批准号:
    1725414
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Computational Polymer Field Theory: Revisiting the Sign Problem
计算聚合物场论:重新审视符号问题
  • 批准号:
    1506008
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
  • 批准号:
    1332842
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop on Opportunities in Theoretical and Computational Polymeric Materials and Soft Matter
理论和计算高分子材料和软物质机遇研讨会
  • 批准号:
    1344297
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Methods and Applications of Computational Polymer Field Theory
计算聚合物场论的方法与应用
  • 批准号:
    1160895
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Field-Theoretic Polymer Simulations: Free Energy and Multi-Scale Methods
场论聚合物模拟:自由能和多尺度方法
  • 批准号:
    0904499
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Computational Design of Nanostructured Complex Fluid Formulations: A Feasibility Study
NER:纳米结构复杂流体配方的计算设计:可行性研究
  • 批准号:
    0304596
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

地聚合物相调控理论与关键材料制备研究
  • 批准号:
    52378257
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
FRP网格/高延性地聚合物加固锈蚀RC柱设计理论研究
  • 批准号:
    52378259
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可逆交联聚合物损伤-修复力学行为的理论建模与机理分析
  • 批准号:
    12372077
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
碳纤维增强聚合物超高周疲劳的损伤机理研究和理论分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于六氮杂三萘二维有机聚合物光解水催化剂的理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了