SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
基本信息
- 批准号:0603355
- 负责人:
- 金额:$ 44.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the geometry and topology of the moduli space of Riemann surfaces and the corresponding mapping class groups has been a goal of central importance in mathematics for many years. In the last 15 years there have been several new perspectives on moduli spaces that have not only increased our understanding of these important objects, but have fundamentally affected major research directions of several areas of topology and geometry, including Hyperbolic Geometry and Geometric Group Theory, Algebraic and Symplectic Geometry, and most recently, Algebraic Topology. In the last five years there have been several startling advances in several of these areas. Taken as a whole, these areas have, in the last few years, represented some of the most exciting directions of study in topology and geometry, and they promise to continue to do so in the forseeable future. This proposal is for the funding of a major, three year emphasis program in the topology and geometry of moduli spaces and related topics. Each year a different mathematical perspective of this topic will be emphasized, but all three years will involve participants from a broad range of subfields. The three areas of emphasis will be Hyperbolic Geometry and Geometric Group Theory, The Algebraic Topology of Moduli Spaces and String Topology, and The Algebraic Geometry of Moduli Spaces and Symplectic Geometry.The study of surfaces has been a major driving force in mathematics since the time of Riemann in the mid 19th century. The space of geometric structures on a given two dimensional surface is known as the moduli space of Riemann surfaces. These moduli spaces have been classically studied in algebraic geometry. With the pioneering work of M. Gromov in the 1970's, these moduli spaces became instrumental in the study of symplectic geometry as well. They are also central in the modern view of low dimensional topology and hyperbolic geometry initiated by Thurston around the same time. With the development of conformal field theory and string theory in the 1980's, these moduli spaces also began to play an important role in theoretical physics. Most recently, techniques of algebraic topology have been brought to bear on the study of these moduli spaces over the last few years with exciting results. Conversely, formalisms from physics and geometry have had a major impact on recent research directions in algebraic topology. The last five years have seen exciting developments in all these geometric and topological areas affecting and affected by moduli spaces of Riemann surfaces. As one can imagine, the excitement produced in these areas of study have attracted many graduate students and young mathematicians. To be effective researchers, it is important that these young mathematicians gain an understanding of the various different perspectives on these moduli spaces and related objects. Cross pollination between these areas both in terms of techniques and directions of research, can have a powerful effect on the development of these central topics in topology and geometry. This proposal is for the funding of a major, three year emphasis program in the topology and geometry of moduli spaces and related topics. The program will be organized by the Mathematics Research Center of Stanford University, one of the leading centers of research in geometry and topology, and by the American Institute of Mathematics, which is a major independent research institute. Each year a different mathematical perspective of this topic will be emphasized, but all three years will involve participants from a broad range of subfields. Some of the world's leading senior mathematicians, their junior colleagues, as well as students will participate in these programs, share and compare their different perspectives and areas of expertise, and will work together to deepen our understanding of this central area of mathematics, and produce new and exciting methods, techniques, and results.
理解黎曼曲面模空间的几何和拓扑以及相应的映射类群多年来一直是数学的核心目标。在过去的 15 年里,出现了一些关于模空间的新观点,它们不仅增加了我们对这些重要对象的理解,而且从根本上影响了拓扑和几何几个领域的主要研究方向,包括双曲几何和几何群论、代数和辛几何,以及最近的代数拓扑。在过去的五年里,其中一些领域取得了一些惊人的进展。总的来说,这些领域在过去几年中代表了拓扑学和几何学中一些最令人兴奋的研究方向,并且在可预见的未来将继续如此。该提案旨在资助模空间拓扑和几何及相关主题的一项为期三年的重点项目。每年都会强调该主题的不同数学观点,但所有三年都将涉及来自广泛子领域的参与者。三个重点领域是双曲几何和几何群论、模空间的代数拓扑和弦拓扑、模空间的代数几何和辛几何。自那时以来,曲面的研究一直是数学的主要驱动力黎曼于 19 世纪中叶提出。给定二维表面上的几何结构空间称为黎曼曲面的模空间。这些模空间已在代数几何中进行了经典研究。随着 M. Gromov 在 1970 年代的开创性工作,这些模空间在辛几何的研究中也发挥了重要作用。它们也是瑟斯顿大约在同一时间发起的低维拓扑和双曲几何现代观点的核心。随着20世纪80年代共形场论和弦理论的发展,这些模空间也开始在理论物理中发挥重要作用。最近几年,代数拓扑技术已被应用于这些模空间的研究,并取得了令人兴奋的结果。相反,物理学和几何学的形式主义对代数拓扑的最新研究方向产生了重大影响。过去五年里,所有这些影响黎曼曲面模空间以及受黎曼曲面模空间影响的几何和拓扑领域都取得了令人兴奋的发展。可以想象,这些研究领域所产生的兴奋吸引了许多研究生和年轻数学家。为了成为有效的研究人员,这些年轻的数学家了解这些模空间和相关对象的各种不同观点非常重要。这些领域之间在技术和研究方向方面的交叉授粉,可以对拓扑和几何这些中心主题的发展产生强大的影响。该提案旨在资助模空间拓扑和几何及相关主题的一项为期三年的重点项目。该项目将由领先的几何和拓扑研究中心之一斯坦福大学数学研究中心和主要独立研究机构美国数学研究所组织。每年都会强调该主题的不同数学观点,但所有三年都将涉及来自广泛子领域的参与者。一些世界领先的高级数学家、他们的初级同事以及学生将参与这些项目,分享和比较他们不同的观点和专业领域,并共同努力加深我们对数学这一核心领域的理解,并产生新的、令人兴奋的方法、技术和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cohen其他文献
Role of simulation for paediatric proceduralists: Practice makes perfect or trial and error?
模拟对儿科程序学家的作用:熟能生巧还是反复试验?
- DOI:
10.1111/jpc.12039 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:1.7
- 作者:
S. S. Bidarkar;James Wood;Ralph Cohen;A. Holland - 通讯作者:
A. Holland
Vanishing lines in generalized Adams spectral sequences are generic
广义 Adams 谱序列中的消失线是通用的
- DOI:
10.2140/gt.1999.3.155 - 发表时间:
1999-07-02 - 期刊:
- 影响因子:2
- 作者:
Geometry Topology;G. G G G G G G G G G G G G G G;M. Hopkins;J. Palmieri;J. Smith;Ralph Cohen;Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
Factors affecting 13C-natural abundance measurement of breath carbon dioxide during surgery: absorption of carbon dioxide during endoscopic procedures.
影响手术期间呼吸二氧化碳 13C 自然丰度测量的因素:内窥镜手术期间二氧化碳的吸收。
- DOI:
10.1002/rcm.3572 - 发表时间:
2008-06-15 - 期刊:
- 影响因子:0
- 作者:
S. Eaton;M. Pacilli;James Wood;M. McHoney;L. Corizia;C. Kingsley;J. Curry;J. Herod;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Carbon dioxide absorption and elimination in breath during minimally invasive surgery
微创手术过程中呼吸中二氧化碳的吸收和消除
- DOI:
10.1088/1752-7155/3/4/047005 - 发表时间:
2009-11-27 - 期刊:
- 影响因子:3.8
- 作者:
S. Eaton;M. McHoney;L. Giacomello;M. Pacilli;M. Bishay;P. de Coppi;James Wood;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Improved automated perimetry performance following exposure to Mozart
听莫扎特音乐后,自动视野检查性能得到改善
- DOI:
10.1136/bjo.2005.085902 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:4.1
- 作者:
Br J Ophthalmol;Carmo Cohen;Mauricio Della Mandia;Geraldo Paolera;V. Vicente De Almeida;Batista Macedo;N. Fiorelli;Andrea Santucci Kasahara;Ralph Fraça;Vanessa Macedo;Batista Fiorelli;N. Kasahara;Ralph Cohen;Andrea Santucci França;M. D. Paolera;C. Mandia;Geraldo Vicente De Almeida - 通讯作者:
Geraldo Vicente De Almeida
Ralph Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cohen', 18)}}的其他基金
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
String Topology and the Algebraic Topology of Moduli Spaces
弦拓扑和模空间的代数拓扑
- 批准号:
0603713 - 财政年份:2006
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
- 批准号:
0244550 - 财政年份:2003
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Workshop on the Mumford Standard Class Conjecture at Stanford University, July and August, 2001.
芒福德标准类猜想研讨会,斯坦福大学,2001 年 7 月和 8 月。
- 批准号:
0115014 - 财政年份:2001
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Presidential Young Investigator: Mathematical Sciences: Algebraic and Differential Topology
总统青年研究员:数学科学:代数和微分拓扑
- 批准号:
8352122 - 财政年份:1984
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 44.88万 - 项目类别:
Standard Grant