Collaborative Research: DDDAS-TMRP: Dynamic Sensor Networks - Enabling the Measurement, Modeling, and Prediction of Biophysical Change in a Landscape
合作研究:DDDAS-TMRP:动态传感器网络 - 实现景观生物物理变化的测量、建模和预测
基本信息
- 批准号:0540414
- 负责人:
- 金额:$ 44.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-15 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The next generation of wireless sensor networks will be dynamic systems with the potential torevolutionize understanding of environmental change, provided they can assimilate large amounts of heterogeneous data in real time, rapidly assess (optimize) the relative value and costs of new data collection, and schedule subsequent measurements accordingly. Thus, they are Dynamic Data Driven Application Systems that integrate sensing with modeling in an adaptive framework. Keen interest in broad application of wireless sensing of the environment, as in NEON and CLEANER, awaits DDDAS technology that can estimate the value of future data in terms of its contribution to understanding against the costs of deployment, acquisition, transmission, and storage. This balance is especially important for environmental data, because networks will typically be deployed in remote locations without access to infrastructure (e.g., power), and sampling intervals will range from meters and seconds to landscapes and years, depending on the process, the current state of the system, the uncertainty about that state, and the perceived potential for rapid change. Network control must be dynamic and driven by models capable of learning about both the environment and the network. The focus of this project is the dynamic sensor network application involving understanding how biodiversity and carbon storage are influenced by global change. Specifically, this project is designed to learn how the growth, survival, and reproduction of forest trees are influenced by changes in climate, CO2 and disturbance, in the context of these and other variables that can fluctuate rapidly. This goal involves models of how tree growth and resource allocation are influenced by variables that can be understood through adaptive sampling across diverse scales in both time and space. The project will enable a general framework for dynamic data-driven wireless network control that combines environmental modeling and sensor network modeling both in and out of the network. Out of the network, environmental modeling entails full assimilation of all information, with exploitation of computing resources available there. Environmental modeling in the network is based on simplified representations that provide real-time, approximate answers. The in-network control model provides rapid scheduling for new measurements, and it communicates network information to the server, for diagnostics, supervisory control, and data assimilation. Periodically, the in-network model is updated based on this most complete understanding of the environmental variables, parameters, and battery life. Specific goals are (i) to construct a wireless sensing and networking infrastructure that supports a new paradigm of joint in-network and supervisory measurement, modeling, and prediction, (ii) to develop the modeling strategy needed to combine system understanding with costs for efficient wireless sensing of the environment, (iii) to make significant progress in understanding the maintenance of biodiversity and in measuring ecosystem properties, and (iv) to improve collaboration between computer sciences, engineering, statisticians and environmental scientists.
下一代无线传感器网络将是动态系统,有可能彻底改变对环境变化的理解,只要它们能够实时吸收大量异构数据,快速评估(优化)新数据收集的相对价值和成本,并安排时间随后进行相应的测量。因此,它们是动态数据驱动的应用系统,在自适应框架中将传感与建模集成在一起。人们对环境无线传感的广泛应用(如 NEON 和 CLEANER)抱有浓厚的兴趣,期待 DDDAS 技术能够根据其对理解部署、采集、传输和存储成本的贡献来估计未来数据的价值。这种平衡对于环境数据尤其重要,因为网络通常部署在无法访问基础设施(例如电源)的远程位置,采样间隔范围从米和秒到景观和年,具体取决于过程、当前状态系统的状态、状态的不确定性以及快速变化的感知潜力。网络控制必须是动态的,并由能够了解环境和网络的模型驱动。 该项目的重点是动态传感器网络应用,涉及了解全球变化如何影响生物多样性和碳储存。具体来说,该项目旨在了解气候、二氧化碳和干扰的变化如何影响林木的生长、生存和繁殖,以及这些和其他可能快速波动的变量的背景。这一目标涉及树木生长和资源分配如何受到变量影响的模型,这些变量可以通过时间和空间上不同尺度的自适应采样来理解。 该项目将为动态数据驱动的无线网络控制提供一个通用框架,该框架将网络内外的环境建模和传感器网络建模结合起来。在网络之外,环境建模需要充分同化所有信息,并利用那里可用的计算资源。网络中的环境建模基于提供实时、近似答案的简化表示。网络内控制模型为新测量提供快速调度,并将网络信息传送到服务器,以进行诊断、监控和数据同化。根据对环境变量、参数和电池寿命的最全面了解,定期更新网络内模型。具体目标是(i)构建无线传感和网络基础设施,支持联合网络内和监督测量、建模和预测的新范式,(ii)开发将系统理解与高效成本相结合所需的建模策略。无线传感环境,(iii) 在了解生物多样性的维护和测量生态系统特性方面取得重大进展,以及 (iv) 改善计算机科学、工程学、统计学家和环境科学家之间的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Flikkema其他文献
Paul Flikkema的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Flikkema', 18)}}的其他基金
SBIR Phase I: Path Planning for Multi-target Search and Localization in Co-Robotic Architectures
SBIR 第一阶段:协作机器人架构中多目标搜索和定位的路径规划
- 批准号:
2325364 - 财政年份:2023
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
Collaborative Research: A Systems-Centric Foundation for Electrical and Computer Engineering Education
协作研究:以系统为中心的电气和计算机工程教育基础
- 批准号:
1140852 - 财政年份:2012
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
Collaborative Project: Multi-University Systems Education (MUSE) - A Model for Undergraduate Learning of Complex-Engineered Systems
合作项目:多大学系统教育 (MUSE) - 复杂工程系统本科学习模型
- 批准号:
0716812 - 财政年份:2007
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
IDEA: Large-Scale Wireless Sensor Networks for In Situ Observation of Ecosystem Processes
IDEA:用于生态系统过程原位观测的大规模无线传感器网络
- 批准号:
0308498 - 财政年份:2003
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
Biodiversity and Ecosystem Informatics - BDEI - Reconfigurable Wireless Sensor Networks for Dense Spatio-Temporal Environmental Monitoring
生物多样性和生态系统信息学 - BDEI - 用于密集时空环境监测的可重构无线传感器网络
- 批准号:
0131691 - 财政年份:2001
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 44.22万 - 项目类别:
Continuing Grant
Collaborative Research: DDDAS-TMRP: MIPS: A Real-Time Measurement Inversion Prediction Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量反演预测指导框架
- 批准号:
0929947 - 财政年份:2009
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 44.22万 - 项目类别:
Continuing Grant
Collaborative Research/DDDAS-TMRP: An Adaptive Cyberinfrastructure for Threat Management in Urban Water Distribution Systems
协作研究/DDDAS-TMRP:城市供水系统威胁管理的自适应网络基础设施
- 批准号:
0963571 - 财政年份:2009
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant
DDDAS-TMRP (Collaborative Research): An Adaptive Cyberinfrastructure for Threat Management in Urban Water Distribution Systems
DDDAS-TMRP(合作研究):城市供水系统威胁管理的自适应网络基础设施
- 批准号:
0849064 - 财政年份:2008
- 资助金额:
$ 44.22万 - 项目类别:
Standard Grant