CMG: Quantifying Uncertainty in Oceanic State Estimation

CMG:量化海洋状态估计的不确定性

基本信息

  • 批准号:
    0530844
  • 负责人:
  • 金额:
    $ 62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-15 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

The main research objective of this project is to develop accurate schemes to calculate posterior covariance estimates of predicted ocean states derived by data assimilation. These schemes will then be applied to quantify confidence in estimates of the climate-critical ocean circulation at Denmark Strait and the Irminger Sea. The project will pursue three overlapping objectives: to quantify posterior covariance in (i) four-dimensional variational assimilation, (ii) particle filters, and, (iii) particle smoothers. For (i) a novel scheme of constrained variation will be employed to calculate selected elements of the inverse Hessian (or Fisher) matrix of the maximum-likelihood cost function. For (ii) and (iii) a combination of parametric and moment-closure methods will be developed to overcome rank-deficiency problems in the particle/ensemble covariance estimates. In each case, the new methods will be initially developed for simple low-order dynamical systems, then applied to an eddy-resolving model of the ocean circulation in the Denmark Strait and Irminger Sea. The project will focus on the importance of non-Gaussian error statistics which are clearly present in this oceanographic application.It is now widely accepted that data assimilation will play a major role in the future of ocean sciences with repercussions for diverse users in the fishing industry, marine transportation, naval operations, and recreation. Data assimilation provides a merger of oceanic measurements (from in-situ instruments and satellites) and knowledge of ocean physics in a numerical algorithm. In principle, it permits critical estimates of ocean temperatures, salinities, and currents in the past, present, and future, depending on the data coverage and the computer power available. However, because of natural variability in the chaotic ocean dynamics, some quantities are intrinsically unpredictable and a range of outcomes with widely different consequences are equally compatible with the available measurements. To be useful for practical decision-making, state and parameter estimates must be accompanied by a realistic assessment of their uncertainty. This project will apply some recent theoretical breakthroughs in applied mathematics to develop accurate assessments of uncertainty in calculated ocean estimates from data assimilation. The project will focus on an important application of great practical and theoretical interest, the ocean circulation southeast of Greenland. Knowledge of the ocean conditions in this area is particularly important for monitoring and predicting climate change. The project will also educate and train undergraduate, postgraduate, and post-doctoral students in the mathematical foundations of data assimilation and its practical application to the oceans.
该项目的主要研究目标是开发精确的方案来计算通过数据同化得出的预测海洋状态的后验协方差估计。然后,这些方案将用于量化对丹麦海峡和伊尔明格海气候关键海洋环流估计的置信度。该项目将追求三个重叠的目标:量化 (i) 四维变分同化、(ii) 粒子滤波器和 (iii) 粒子平滑器中的后验协方差。对于 (i),将采用约束变化的新颖方案来计算最大似然成本函数的逆 Hessian(或 Fisher)矩阵的选定元素。对于(ii)和(iii),将开发参数和矩闭合方法的组合来克服粒子/系综协方差估计中的等级不足问题。在每种情况下,新方法最初都将针对简单的低阶动力系统开发,然后应用于丹麦海峡和伊尔明格海海洋环流的涡旋解析模型。该项目将重点关注在海洋学应用中明显存在的非高斯误差统计的重要性。现在人们普遍认为,数据同化将在海洋科学的未来中发挥重要作用,并对渔业中的不同用户产生影响、海上运输、海军行动和娱乐。数据同化提供了海洋测量(来自现场仪器和卫星)和数值算法中的海洋物理知识的合并。原则上,它允许对过去、现在和未来的海洋温度、盐度和洋流进行关键估计,具体取决于数据覆盖范围和可用的计算机能力。 然而,由于混沌海洋动力学的自然变化,某些量本质上是不可预测的,并且一系列具有广泛不同后果的结果同样与可用的测量结果兼容。为了对实际决策有用,状态和参数估计必须伴随着对其不确定性的现实评估。该项目将应用应用数学领域最近的一些理论突破,对数据同化计算的海洋估计中的不确定性进行准确评估。 该项目将重点研究具有重大实际和理论意义的重要应用,即格陵兰岛东南部的海洋环流。了解该地区的海洋状况对于监测和预测气候变化尤为重要。该项目还将教育和培训本科生、研究生和博士后学生数据同化的数学基础及其在海洋中的实际应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Haine其他文献

19.6 A 40-to-80MHz Sub-4μW/MHz ULV Cortex-M0 MCU SoC in 28nm FDSOI With Dual-Loop Adaptive Back-Bias Generator for 20μs Wake-Up From Deep Fully Retentive Sleep Mode
19.6 采用 28nm FDSOI 封装的 40 至 80MHz 低于 4μW/MHz ULV Cortex-M0 MCU SoC,具有双环路自适应反向偏置发生器,可从深度完全保持睡眠模式唤醒 20μs
8-T ULV SRAM macro in 28nm FDSOI with 7.4 pW/bit retention power and back-biased-scalable speed/energy trade-off
采用 28nm FDSOI 的 8-T ULV SRAM 宏,具有 7.4 pW/位保持功率和反向偏置可扩展速度/能量权衡
An 80-MHz 0.4V ULV SRAM macro in 28nm FDSOI achieving 28-fJ/bit access energy with a ULP bitcell and on-chip adaptive back bias generation
采用 28nm FDSOI 的 80MHz 0.4V ULV SRAM 宏,通过 ULP 位单元和片上自适应反向偏置生成实现 28fJ/位访问能量
Gradient importance sampling: An efficient statistical extraction methodology of high-sigma SRAM dynamic characteristics
梯度重要性采样:高西格玛SRAM动态特性的高效统计提取方法

Thomas Haine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Haine', 18)}}的其他基金

Impacts of Arctic freshwater export on the subpolar North Atlantic Ocean circulation
北极淡水输出对副极地北大西洋环流的影响
  • 批准号:
    2242033
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Subinertial variability across and around the Greenland-Scotland Ridge and its impacts on the ocean circulation
格陵兰-苏格兰海岭及其周围的亚惯性变率及其对海洋环流的影响
  • 批准号:
    2148838
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Pathways and fate of freshwater near the southern tip of Greenland
合作研究:格陵兰岛南端附近淡水的路径和归宿
  • 批准号:
    2048496
  • 财政年份:
    2021
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: Toward Exascale Community Ocean Circulation Modeling
合作研究:框架:数据:迈向百万兆亿级社区海洋环流建模
  • 批准号:
    1835640
  • 财政年份:
    2018
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Sea-surface dynamics diagnosed from satellite data and coupled models
根据卫星数据和耦合模型诊断海面动力学
  • 批准号:
    1536554
  • 财政年份:
    2015
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of Freshwater Exchange Across the East Greenland Shelf
合作研究:东格陵兰陆架淡水交换机制
  • 批准号:
    1433448
  • 财政年份:
    2014
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Submarine Melting of Greenland's Glaciers: What are the relevant ocean dynamics?
合作研究:格陵兰岛冰川海底融化:相关的海洋动力学是什么?
  • 批准号:
    1129895
  • 财政年份:
    2011
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
International Workshop/School on Tracer and Timescale Methods for Understanding Complex Geophysical and Environmental Processes
了解复杂地球物理和环境过程的示踪剂和时间尺度方法国际研讨会/学校
  • 批准号:
    1130068
  • 财政年份:
    2011
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Petascale Arctic Atlantic Antarctic Virtual Experiment
千万亿次北极大西洋南极虚拟实验
  • 批准号:
    0904640
  • 财政年份:
    2009
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant
Collaborative Research: Shelf-Basin Exchange South of Denmark Strait: Forcing, Dynamics, and Large-Scale Impact
合作研究:丹麦海峡以南的陆架盆地交换:强迫、动力学和大规模影响
  • 批准号:
    0726393
  • 财政年份:
    2007
  • 资助金额:
    $ 62万
  • 项目类别:
    Standard Grant

相似国自然基金

数学物理问题中正则化模型的不确定性量化分析
  • 批准号:
    12371423
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于时变耦合矩阵不等式的不确定非线性系统全局自适应量化控制研究
  • 批准号:
    62373131
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
水电机组全工况健康状态双向认知建模与不确定性量化预测
  • 批准号:
    52379088
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
民用飞机结构数字孪生系统不确定性量化与可信性验证方法研究
  • 批准号:
    52372429
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高负荷涡轮叶顶气热耦合机理及多源不确定性量化的研究
  • 批准号:
    52306051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Methane emissions from inland waters: Quantifying the largest uncertainty in the global methane budget
内陆水域甲烷排放:量化全球甲烷预算中最大的不确定性
  • 批准号:
    2887249
  • 财政年份:
    2024
  • 资助金额:
    $ 62万
  • 项目类别:
    Studentship
Quantifying the cognitive processes supporting computations of stochasticity and volatility in humans
量化支持人类随机性和波动性计算的认知过程
  • 批准号:
    10732422
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
Quantifying the impact of vaccines on antibiotic use for respiratory infections in children
量化疫苗对儿童呼吸道感染抗生素使用的影响
  • 批准号:
    10606403
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantifying synergy and tradeoff between resource efficiency and climate change: Filling the fundamental knowledge gap in systems analysis and uncertainty treatment
量化资源效率与气候变化之间的协同和权衡:填补系统分析和不确定性处理方面的基础知识空白
  • 批准号:
    RGPIN-2021-02841
  • 财政年份:
    2022
  • 资助金额:
    $ 62万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了