Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions

聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用

基本信息

  • 批准号:
    0520368
  • 负责人:
  • 金额:
    $ 10.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-01-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Project SummaryAtmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma Surface InteractionsThis is a computational research program that investigates fundamentals of atmospheric-pressure plasma (APP) transport and plasma-surface interactions in the context of APP processing of polymers. The goals of this program are an integrated, multi-scale modeling hierarchy, spanning scales of nanometers to centimeters, and its use to determine the limiting plasma transport processes and upside potential of APP processing of high-value materials. These goals are met by developing a comprehensive, 3-dimensional plasma-dynamics model for atmospheric-pressure corona and glow discharges that is capable of investigating complex plasma chemistries; developing 3-d plasma-surface interaction algorithms capable of addressing the nanoscale spatial structures typically found on polymers; adapting feature-profile models (originally developed for semiconductor processing) to address plasma-initiated chemistry on polymer surfaces; and integrating these modules into a centimeter-to-nanometer hierarchy.The use of plasmas to produce desired surface properties of a polymer, such as hydrophobicity or hydrophilicity, is a topic both of current scientific investigation and of commercial interest. There are two pathways to achieve this functionalization: deposition and modification. In plasma deposition, polymeric surfaces with specific characteristics are obtained by depositing materials from a plasma. These processes are usually performed at low pressures in systems not unlike those used for microelectronics fabrication. As a consequence, such processing is usually limited to high-value-added materials, such as for biologically compatible coatings. In plasma modification, a conventionally manufactured inexpensive polymer is treated with a plasma to change its surface properties. These processes are typically conducted at atmospheric pressure using corona discharge devices in a "web" arrangement. Unlike low-pressure plasma deposition, APP (atmospheric pressure plasma) processing of polymers is usually a low-value-added process. Polymers and plastics such as polypropylene and polyethylene are processed to improve their adhesion and wettability. In spite of the commercial use of APPs for treating polymers, there are few first order, fundamentals-based models describing the plasma-surface interactions that modify polymer surfaces. As a consequence, the development and optimization of APPs for polymer processing has been, for all practical purposes, an empirical undertakingBroader Impacts The economic and societal benefits of being able to adapt inexpensive and high-volume APP methods for modifying polymers to produce high-value films is staggering. For example, biocompatible artificial skin for treatment of burn patients could be produced for $1/m2 as opposed to $1,000's to $10,000's per m2 which is typical of newly FDA-approved products. The current knowledge base is inadequate to make these advances and improving that knowledge base will help determine the practicality of achieving these goals. The computational techniques and improvements in the knowledge base produced in this project are applicable to a variety of APP applications, including lighting, toxic gas remediation, sterilization of surfaces, bioremediation, and microdischarges..
项目摘要聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体表面相互作用这是一个计算研究项目,研究聚合物 APP 加工背景下的大气压等离子体 (APP) 传输和等离子体-表面相互作用的基础知识。该项目的目标是建立一个集成的、多尺度的建模层次结构,跨越纳米到厘米的尺度,并用它来确定限制等离子体传输过程和高价值材料 APP 处理的上行潜力。这些目标是通过开发一个用于大气压电晕和辉光放电的全面的 3 维等离子体动力学模型来实现的,该模型能够研究复杂的等离子体化学; 开发 3D 等离子体表面相互作用算法,能够解决聚合物上常见的纳米级空间结构; 采用特征轮廓模型(最初为半导体加工开发)来解决聚合物表面上等离子体引发的化学问题; 并将这些模块集成到厘米到纳米的层次结构中。使用等离子体产生所需的聚合物表面特性(例如疏水性或亲水性)是当前科学研究和商业利益的主题。实现这种功能化有两种途径:沉积和修饰。 在等离子体沉积中,通过等离子体沉积材料获得具有特定特性的聚合物表面。 这些过程通常在低压系统中进行,与微电子制造所用的系统不同。 因此,这种加工通常仅限于高附加值材料,例如生物相容性涂层。 在等离子体改性中,用等离子体处理传统制造的廉价聚合物以改变其表面性质。 这些过程通常使用“网状”布置的电晕放电装置在大气压下进行。 与低压等离子体沉积不同,聚合物的 APP(常压等离子体)加工通常是一种低附加值的工艺。 聚合物和塑料(例如聚丙烯和聚乙烯)经过加工以提高其粘合性和润湿性。 尽管应用程序用于处理聚合物已实现商业用途,但很少有一阶、基于基础的模型描述修饰聚合物表面的等离子体-表面相互作用。 因此,出于所有实际目的,用于聚合物加工的 APP 的开发和优化一直是一项经验性的工作。 更广泛的影响 能够采用廉价且大批量的 APP 方法来改性聚合物以生产高价值的经济和社会效益电影令人震惊。 例如,用于治疗烧伤患者的生物相容性人造皮肤的生产成本可以为 1 美元/平方米,而 FDA 新批准的产品通常为每平方米 1,000 至 10,000 美元。当前的知识库不足以取得这些进步,改进该知识库将有助于确定实现这些目标的实用性。 该项目中产生的计算技术和知识库的改进适用于各种APP应用,包括照明、有毒气体修复、表面消毒、生物修复和微放电。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Kushner其他文献

Prolonged Sinus Arrest Complicating a Thrombotic Stroke
长时间的窦性停搏使血栓性中风复杂化

Mark Kushner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Kushner', 18)}}的其他基金

Collaborative Research: GOALI - Nonlinear Coupling in Pulsed Electronegative Plasmas: Multiple-sources, Multiple-frequencies, Multiple-time scales
合作研究:GOALI - 脉冲负电等离子体中的非线性耦合:多源、多频率、多时间尺度
  • 批准号:
    2009219
  • 财政年份:
    2020
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis
合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化
  • 批准号:
    2032604
  • 财政年份:
    2020
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Continuing Grant
GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020010
  • 财政年份:
    2020
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1902878
  • 财政年份:
    2019
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
A Workshop on Science Challenges in Low Temperature Plasma Science and Engineering: Enabling a Future Based on Electricity through Non-Equilibrium Plasma Chemistry
低温等离子体科学与工程科学挑战研讨会:通过非平衡等离子体化学实现基于电的未来
  • 批准号:
    1613074
  • 财政年份:
    2016
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI - Non-Equilibrium Processes, Stability, Design and Control of Pulsed Plasmas for Materials Processing
合作研究:GOALI - 用于材料加工的脉冲等离子体的非平衡过程、稳定性、设计和控制
  • 批准号:
    1500126
  • 财政年份:
    2015
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: Cyber-Enabled Studies of Complexity in Nanodusty Plasmas
合作研究:CDI-II 型:纳米尘等离子体复杂性的网络研究
  • 批准号:
    1124724
  • 财政年份:
    2011
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
International Experiences in Low Temperature Plasmas: Student Travel Support to Attend the 2010 Gaseous Electronics Conference, October 4-8, 2010 in Paris, France
低温等离子体的国际经验:为学生参加 2010 年 10 月 4-8 日在法国巴黎举行的 2010 年气体电子会议提供旅行支持
  • 批准号:
    1038603
  • 财政年份:
    2010
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Atmospheric Pressure Plasma Processing of Polymers: Plasma Dynamics and Nanoscale Plasma-Surface Interactions
聚合物的大气压等离子体加工:等离子体动力学和纳米级等离子体-表面相互作用
  • 批准号:
    0315353
  • 财政年份:
    2003
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Continuing Grant
Gordon Research Conference on Plasma Processing Science: Support for Graduate and Post-Doctoral Students
戈登等离子体处理科学研究会议:对研究生和博士后学生的支持
  • 批准号:
    0215382
  • 财政年份:
    2002
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant

相似国自然基金

高频响微等离子体测压原理及高负荷压气机端区流动的非定常测量
  • 批准号:
    51806222
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
压力与金属等离子体调节稀土荧光及改善其单离子探测的研究
  • 批准号:
    11804047
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
液氧/甲烷火箭发动机超临界压力振荡环境下等离子体助燃稳燃研究
  • 批准号:
    91441123
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
强激光与等离子体相互作用加速高品质离子束的理论与粒子模拟研究
  • 批准号:
    11365020
  • 批准年份:
    2013
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
超强超短激光与等离子体相互作用中的离子加速及非线性问题研究
  • 批准号:
    11305010
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition
职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石
  • 批准号:
    2238235
  • 财政年份:
    2023
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
  • 批准号:
    10730652
  • 财政年份:
    2023
  • 资助金额:
    $ 10.39万
  • 项目类别:
Development of a closed-loop control system for plasma medicine
血浆医学闭环控制系统的开发
  • 批准号:
    10558618
  • 财政年份:
    2022
  • 资助金额:
    $ 10.39万
  • 项目类别:
LEAPS-MPS: Production of Solvated Electrons by Atmospheric Pressure Plasma Jets
LEAPS-MPS:通过大气压等离子体射流产生溶剂化电子
  • 批准号:
    2213526
  • 财政年份:
    2022
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Standard Grant
Formation of double roughness structures on surface of polymer blend film using atmospheric pressure low temperature plasma
利用常压低温等离子体在聚合物共混膜表面形成双粗糙结构
  • 批准号:
    22K04251
  • 财政年份:
    2022
  • 资助金额:
    $ 10.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了