Scanning nano-OLED Probe

扫描纳米OLED探针

基本信息

项目摘要

0523986ShteinNear-field Scanning Optical Microscopy (NSOM) has demonstrated sub-wavelength spatial resolution and has been applied to a broad range of systems. However, a combination of illumination geometry, absorption losses in the tip, and photobleaching in purely optical NSOM techniques results in low signal-to-noise ratios, severe tip heating, sample degradation, and unpredictable response. A different means of localized, on-demand photon generation is needed to further improve the measurement.The proposed research addresses these challenges by studying the effects of nanometer scale confinement of charges and excitons in organic semiconductors. A multifunctional scanning nano-probe tool will be fabricated, consisting of an electrically pumped organic light emitting diode (OLED) deposited inside of a nanoscale cylindrical cavity in the vertex of a scanning probe cantilever. Intellectual Merit: The proposed nano-OLED probe will be 100 times smaller than individually addressable OLEDs made to date, providing a powerful platform for investigating surface interactions that influence the performance of other nano-scale devices. This will result in greater understanding of the fundamental mechanisms and scaling laws of charge and energy transport in functional organic materials. This will in turn enable improvements in the performance characteristics of large-area organic optoelectronic devices. The ability to electrically pump the probe will allow the study of sensitive biological materials, photonic devices, and materials. The proposed research will also examine fundamental issues of molecular transport in highly confined geometries, as well as organic deposition techniques having broader applications in nano-fabrication. Broader Impact: As a new NSOM technique with electrical pumping and tunability, the nano-OLED probe can become the optical equivalent of STM, enabling new applications such as a read-write head for nanoscale optical bit storage elements and tunable nanosensor arrays. Studying the confinement of light and charge carriers, as well as nanofabrication using organic materials, can impact the development of electrically pumped organic lasers, and the integration of tunable light sources and sensors with nano-scale electronic circuits. The nano-OLED probe will enhance research and education infrastructure by providing novel instrumentation for the study of nanosystems. Through its interdisciplinary nature, this project will train students in the emerging fields of organic electronics and nano-fabrication. The research results will be integrated into the curricula of at least two departments, promoting teaching and training that will enable further and collaborative studies in the state-of-the-art nanoscale characterization and processing tools.
0523986Shtein近场扫描光学显微镜 (NSOM) 已展示出亚波长空间分辨率,并已应用于广泛的系统。然而,纯光学 NSOM 技术中的照明几何形状、尖端吸收损耗和光漂白的组合会导致低信噪比、严重的尖端加热、样品降解和不可预测的响应。需要一种不同的局部按需光子生成方法来进一步改进测量。本文提出的研究通过研究有机半导体中电荷和激子的纳米级限制的影响来解决这些挑战。将制造多功能扫描纳米探针工具,由沉积在扫描探针悬臂顶点的纳米级圆柱形空腔内的电泵有机发光二极管(OLED)组成。智力优点:所提出的纳米 OLED 探针将比迄今为止制造的可单独寻址 OLED 小 100 倍,为研究影响其他纳米级设备性能的表面相互作用提供了强大的平台。这将使人们更好地了解功能有机材料中电荷和能量传输的基本机制和比例定律。这反过来将提高大面积有机光电器件的性能特征。电泵浦探针的能力将允许研究敏感的生物材料、光子器件和材料。拟议的研究还将研究高度受限的几何形状中分子传输的基本问题,以及在纳米制造中具有更广泛应用的有机沉积技术。更广泛的影响:作为一种具有电泵浦和可调谐性的新型 NSOM 技术,纳米 OLED 探针可以成为 STM 的光学等效物,从而实现新的应用,例如用于纳米级光学位存储元件和可调谐纳米传感器阵列的读写头。研究光和电荷载流子的限制以及使用有机材料的纳米加工可以影响电泵浦有机激光器的发展以及可调谐光源和传感器与纳米级电子电路的集成。纳米 OLED 探针将为纳米系统研究提供新颖的仪器,从而增强研究和教育基础设施。通过其跨学科性质,该项目将在有机电子和纳米制造等新兴领域对学生进行培训。研究成果将被纳入至少两个系的课程中,促进教学和培训,从而实现最先进的纳米级表征和处理工具的进一步合作研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Max Shtein其他文献

Max Shtein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Max Shtein', 18)}}的其他基金

I-Corps: Photonic Fiber Barcodes for Integrated Textile Traceability and Sorting
I-Corps:用于集成纺织品追溯和分类的光子光纤条形码
  • 批准号:
    2325764
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Manufacturing of Personalized Medicines
EFRI DCheM:个性化药品的分布式制造
  • 批准号:
    2029139
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
RAPID: Highly Customizable, Breathable N95 Mask Design Utilizing Kirigami-enabled Filters and Sensor Platforms to Maximize Comfort and Monitor usage Patterns
RAPID:高度可定制、透气的 N95 口罩设计,利用 Kirigami 功能的过滤器和传感器平台来最大限度地提高舒适度并监控使用模式
  • 批准号:
    2034626
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
PFI-TT: Research and Development of a Novel Printer for Small Molecular-Based Medicines That Enhances Their Dissolution Properties and Cost-Effectiveness.
PFI-TT:研究和开发用于小分子药物的新型打印机,可增强其溶出特性和成本效益。
  • 批准号:
    1827123
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
I-Corps: Kirigami solar cell development for commercial applications
I-Corps:商业应用的 Kirigami 太阳能电池开发
  • 批准号:
    1533829
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
EFRI-ODISSEI: Multi-scale Origami for Novel Photonics, Energy Conversion
EFRI-ODISSEI:用于新型光子学、能量转换的多尺度折纸
  • 批准号:
    1240264
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
IMR: Development of an Atmospheric Vapor Jet Deposition Apparatus for Organic Optoelectronic Materials Research and Education
IMR:开发用于有机光电材料研究和教育的大气蒸气喷射沉积装置
  • 批准号:
    0817484
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NER: Electrically Pumped Organic Solid-State Surface Plasmon Amplifier
NER:电泵有机固态表面等离子体放大器
  • 批准号:
    0608849
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

基于三维纳米复合电极的可拉伸OLED及其在可穿戴医疗中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金刚石纳米刀具阵列的OLED玻璃基板亚波长出光结构加工机理
  • 批准号:
    52175402
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于激基复合物的超高效稳定白光器件及界面机理研究
  • 批准号:
    61875144
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
面向柔性OLED显示基板用聚酰亚胺的分子设计与性能调控
  • 批准号:
    51733007
  • 批准年份:
    2017
  • 资助金额:
    300.0 万元
  • 项目类别:
    重点项目
印刷银纳米线柔性透明电极及其可拉伸OLED器件关键问题研究
  • 批准号:
    61774088
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

LC-MS/MS system with high-resolution mass spectrometer and nano-UHPLC - 2/2
配备高分辨率质谱仪和纳米 UHPLC 的 LC-MS/MS 系统 - 2/2
  • 批准号:
    527318363
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Major Research Instrumentation
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
  • 批准号:
    10481965
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
CAREER: Evaluating Molecular Homogeneity in Three Nanometric Dimensions Using Nano-Projectile Secondary Ion Mass Spectrometry
职业:使用纳米弹丸二次离子质谱评估三个纳米维度的分子均匀性
  • 批准号:
    2340430
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nano-homodyne-optofluidicsによる汎用超高感度ナノ物質検出法の創成
使用纳米零差光流控创建通用超灵敏纳米材料检测方法
  • 批准号:
    24K01322
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了