Understanding and manipulation of contact forces and corresponding bulk flow properties of chemically modified nanoparticles at controlled capillary bridge formation

了解和操纵化学改性纳米颗粒在受控毛细管桥形成时的接触力和相应的整体流动特性

基本信息

项目摘要

The aim of the project is the description and manipulation of contact forces of TiO2 nanoparticles under environmental conditions. Since, in the presence of humidity the inter-particle processes are dominated by capillary forces, a fundamental understanding of the water adsorption will be a key element in this study. However, the adsorbed water structure and thus the capillary bridge formation is influenced by various parameters like the particle morphology (e.g. particle size, roughness) as well as the surface chemistry (surface energy, adsorbate structure) and therefore needs to be analyzed on a molecular basis. The project will be performed cooperatively by the Particle Technology Group (PVT, Dep. Mechanical Engineering) and the chair for Technical and Macromolecular Chemistry (TMC, Dep. Chemistry).In order to derive a model capable of predicting particle behavior on a macroscopic scale, the processes involved have to be understood on a fundamental basis. Within the scope of this project we propose a multi scale approach ranging from experiments on an individual particle level (AFM and liquid bridge simulation) and investigations on small particle ensembles (combined QCM-D / FTIR) up to macroscopic shear test.In this context, the combined in-situ QCM-D / FTIR experiments will bridge the gap between experiments on an individual particle level and macroscopic shear test. Each of these experiments will give valuable insights on different aspects of the complex interplay between inter-particle forces and the surface chemistry under environmental control. Variation of surface chemistry by means of adsorption of functional organic molecules will facilitate the correlation of macroscopic particle behavior like water adsorption isothermes and bulk flow properties to nanoscopic effects like the presence and structure of adsorbate layers as well as the formation of capillary bridges while keeping the disperse properties constant.Since direct control of the particle properties is of outmost importance for such a fundamental study the synthesis of particles with controlled surface and morphology is necessary. Complementing the experimental results, a method for the numerical simulations of capillary bridges with arbitrary shape and the resulting forces on particles and without the need of approximations regarding the meniscus shape will be developed. Calculating forces of static liquid bridges and of capillary forces during separation of particles will allow the transfer to DEM simulations.
该项目的目的是在环境条件下描述和操纵TiO2纳米颗粒的接触力。由于在存在湿度的情况下,粒子间过程以毛细作用为主,因此对水吸附的基本了解将是本研究的关键要素。然而,吸附的水结构以及毛细血管桥的形成受到各种参数的影响,例如粒子形态(例如粒径,粗糙度)以及表面化学(表面能,吸附物结构),因此需要在分子上进行分析基础。该项目将由粒子技术组(PVT,DEP。机械工程)和技术和大分子化学椅(TMC,DEP。Chemistry)合作执行。 ,涉及的过程必须基本理解。在该项目的范围内,我们提出了一种多量表方法,从单个颗粒水平的实验(AFM和液体桥模拟)以及对小粒子集合(组合QCM-D / FTIR)的研究到宏观剪切测试。 ,合并的原位QCM-D / FTIR实验将在单个颗粒水平和宏观剪切测试上弥合实验之间的差距。这些实验中的每一个都将在环境控制下对粒子间力与表面化学之间的复杂相互作用的不同方面提供宝贵的见解。通过吸附功能性有机分子的吸附表面化学的变化将促进宏观颗粒行为的相关性,例如水吸附等速异体和散装流动性能与纳米镜面效应,例如吸附剂层的存在和结构分散性质不变。由于直接控制粒子特性对于这种基本研究至关重要,因此必须具有控制表面和形态的颗粒的合成。补充实验结果,一种用于任意形状的毛细管桥的数值模拟的方法,并且将不需要关于半月板形状的近似值。粒子分离过程中静态液体桥和毛细作用力的计算力将允许转移到DEM模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Guido Grundmeier其他文献

Professor Dr.-Ing. Guido Grundmeier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Guido Grundmeier', 18)}}的其他基金

Development and characterization of biodegradable FeMnAg-materials used for the SLM-process
用于 SLM 工艺的可生物降解 FeMnAg 材料的开发和表征
  • 批准号:
    414365989
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Comparative Molecular Adhesion Studies of Polyacrylic Acids on ZnO Single Crystal Surfaces and ZnO Nanocrystalline Films
聚丙烯酸在 ZnO 单晶表面和 ZnO 纳米晶薄膜上的分子附着力比较研究
  • 批准号:
    320414069
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Growth and modification of passive layers on new Zn alloys using atmospheric-pressure plasmas
使用大气压等离子体在新型锌合金上生长和改性钝化层
  • 批准号:
    276092843
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Joining of blanks with electrochemical support (ECUF)
使用电化学支撑 (ECUF) 连接毛坯
  • 批准号:
    227635593
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Grundlegendes Verständnis der Substratkorrosion und der lokalen Schädigungsprozesse in Klebstoff/Oxid/Metall-Grenzflächenphasen
对粘合剂/氧化物/金属界面相中的基材腐蚀和局部损伤过程的基本了解
  • 批准号:
    198595701
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular UHV-FTIR studies of adsorbate covered TiO2-microparticle surfaces
吸附物覆盖的 TiO2 微粒表面的分子 UHV-FTIR 研究
  • 批准号:
    169597163
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Investigation of the formability of thin nanoclay containing polyelectrolyte films on NiTi-substrates in humid environments
研究潮湿环境下 NiTi 基底上含有聚电解质薄膜的纳米粘土薄层的形成性
  • 批准号:
    58242643
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Design of microstructure and degradation behavior of oxide-particle modified Fe-based alloys processed by selective electron beam melting
选择性电子束熔炼氧化物颗粒改性铁基合金的显微组织和退化行为设计
  • 批准号:
    413259151
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Influence of the surface chemistry of Al chips on a friction-induced recycling process for the manufacture of Al wires
铝屑表面化学对铝丝制造摩擦诱导回收过程的影响
  • 批准号:
    500288680
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

腐烂病菌效应蛋白VmHEP1操纵苹果胞外蛋白MdLRRP1介导的感病机制研究
  • 批准号:
    32330089
  • 批准年份:
    2023
  • 资助金额:
    219 万元
  • 项目类别:
    重点项目
真菌病毒CaPV1操纵的CfKOB1巴豆酰化修饰调控果生炭疽菌致病性的分子机制
  • 批准号:
    32302335
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
pyr操纵子调控粪肠球菌与具核梭杆菌相互作用的分子机制研究
  • 批准号:
    82301054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
注册制背景下科创板IPO公司研发操纵问题研究
  • 批准号:
    72302102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂微通道内电场操纵液滴动力学行为的介观建模与机理研究
  • 批准号:
    12372287
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

How does neuronal contact mediate astrocyte transcriptional maturation?
神经元接触如何介导星形胶质细胞转录成熟?
  • 批准号:
    10748163
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-contact Push Synthesis of Unknown Objects in Clutter
杂乱中未知物体的多接触推送合成
  • 批准号:
    23K03756
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualisation and manipulation of the mechano-spin conversion by non-contact optical measurement
通过非接触式光学测量实现机械自旋转换的可视化和操作
  • 批准号:
    23H01471
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Imitation learning for contact-rich manipulation
模仿学习进行丰富的接触操作
  • 批准号:
    2901317
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Object State Change Detection and Human Behavior Prediction Focused on Hand Manipulation
专注于手部操作的物体状态变化检测和人类行为预测
  • 批准号:
    21J11626
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了