Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany

辛场论研讨会;

基本信息

  • 批准号:
    0505968
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-01 至 2007-02-28
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0505968Principal Investigator: Helmut H. Hofer and Dusa McDuffThis instructional workshop, co-sponsored by the DFG (the Germanequivalent of the NSF) will bring together junior and seniorresearchers in the field of symplectic geometry. The field hasits origins in Hamiltonian dynamics and geometric optics and hasmany fundamental applications. For example, numerical methodsbased on symplectic ideas (symplectic integrators) are used tocompute the orbits of satellites and other celestialbodies. Historic highlights are KAM-Theory(Kolmogorov-Arnold-Moser), which leads to a proof of thestability of our solar system, and the theory ofinfinite-dimensional integrable systems, which is themathematical underpinning of fiber optics, a technology that liesat the heart of all of our communication networks. More recently,the rapidly developing theory of pseudoholomorphic curves has ledto deep new insights into the structure of three andfour-dimensional space, and to unexpected new connections betweengeometry and physics. It is a surprising fact that the sameunderlying ideas apply to geometric optics, to dynamics and tothe most abstract physics (i.e. string theory).It is the purpose of this instructional workshop to describe theconstruction of symplectic field theory (SFT) in detail. SFT is acomprehensive theory of symplectic invariants, including suchwell-known theories as Floer theory, Gromov-Witten theory andcontact homology. It is constructed by measuring moduli spaces ofpseudoholomorphic curves. The richness of its structure comesfrom the fact that the moduli spaces have boundaries andsingularities and that infinitely many moduli spaces interactwith each other. These structures can be captured by a novelnonlinear Fredholm theory which is distinguished by twofacts. The ambient spaces do not carry smooth structures in theusual sense and even have locally varying dimensions. Howeverthere is a notion of transversality (or regularity), and atregular points the solution sets are smooth orbifolds withboundaries and corners. Moreover the theory makes precise whatit means for infinitely many Fredholm operators to interact witheach other, which leads to a so-called "Fredholm Theory withOperations". This abstract Fredholm Theory is developed andillustrated by its application to SFT. The issues addressed arepertinent to a variety of important problems, and one can expectthat the ideas presented at the workshop will have implicationsin a number of mathematical fields and their applications.
摘要奖:DMS-0505968 首席研究员:Helmut H. Hofer 和 Dusa McDuff 这个教学研讨会由 DFG(德国相当于 NSF)共同主办,将汇集辛几何领域的初级和高级研究人员。该领域起源于哈密顿动力学和几何光学,并具有许多基础应用。例如,基于辛思想(辛积分器)的数值方法用于计算卫星和其他天体的轨道。历史亮点是 KAM 理论(柯尔莫哥洛夫-阿诺德-莫泽),它证明了我们太阳系的稳定性,以及无限维可积系统理论,它是光纤的数学基础,而光纤是一项处于核心技术的技术。我们所有的通信网络。最近,快速发展的伪全纯曲线理论引发了对三维和四维空间结构的深刻新见解,以及几何学和物理学之间意想不到的新联系。 令人惊讶的是,相同的基本思想也适用于几何光学、动力学和最抽象的物理学(即弦理论)。本次教学研讨会的目的是详细描述辛场论(SFT)的构造。 SFT是辛不变量的综合理论,包括Floer理论、Gromov-Witten理论和接触同调等著名理论。它是通过测量伪全纯曲线的模空间来构造的。其结构的丰富性来自于模空间有边界和奇异性以及无限多个模空间相互作用。 这些结构可以通过新颖的非线性 Fredholm 理论来捕获,该理论有两个事实。周围空间并不具有通常意义上的平滑结构,甚至具有局部变化的尺寸。然而,存在横向性(或规律性)的概念,并且在规则点处,解集是具有边界和角的平滑轨道。 此外,该理论精确地解释了无限多个 Fredholm 算子之间相互作用的含义,这导致了所谓的“Fredholm 算子理论”。这个抽象的 Fredholm 理论是通过其在 SFT 中的应用来发展和说明的。所讨论的问题与各种重要问题相关,可以预期研讨会上提出的想法将对许多数学领域及其应用产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helmut Hofer其他文献

Convex Hamiltonian energy surfaces and their periodic trajectories
First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems
一阶椭圆系统和哈密顿系统中同宿轨道的存在性
  • DOI:
    10.1007/bf01444543
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Helmut Hofer;K. Wysocki
  • 通讯作者:
    K. Wysocki
A Long-run Macroeconomic Model of the Austrian Economy (A-LMM). Model Documentation and Simulations
奥地利经济的长期宏观经济模型(A-LMM)。
  • DOI:
  • 发表时间:
    2004-07-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Baumgartner;Helmut Hofer;S. Kaniovski;Ulrich Schuh;T. Url
  • 通讯作者:
    T. Url
Orientations
方向
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helmut Hofer;K. Wysocki;E. Zehnder
  • 通讯作者:
    E. Zehnder
Coherent orientations for periodic orbit problems in symplectic geometry
辛几何中周期轨道问题的相干方向
  • DOI:
    10.1007/bf02571639
  • 发表时间:
    1993-09-14
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    A. Floer;Helmut Hofer
  • 通讯作者:
    Helmut Hofer

Helmut Hofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helmut Hofer', 18)}}的其他基金

IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
  • 批准号:
    1915835
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1638352
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Research in Mathematics
数学研究
  • 批准号:
    1128155
  • 财政年份:
    2012
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Symplectic Geometry and Dynamics
辛几何与动力学
  • 批准号:
    1104470
  • 财政年份:
    2011
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0603957
  • 财政年份:
    2006
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0102298
  • 财政年份:
    2001
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
VIGRE: Undergraduate, Graduate, and Postdoctoral Education in Mathematics at the Courant Institute
VIGRE:库朗研究所数学本科、研究生和博士后教育
  • 批准号:
    9983190
  • 财政年份:
    2000
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    9802154
  • 财政年份:
    1998
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence and Multiplicity Questions for Periodic Solutions of Hamiltonian Systems and Related Topics
数学科学:哈密顿系统周期解的存在性和多重性问题及相关主题
  • 批准号:
    8803496
  • 财政年份:
    1988
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant

相似国自然基金

典型全氟辛磺酸替代物在水稻中的分布特征及代谢转化机制研究
  • 批准号:
    22306198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于热敏受体/甜味受体探讨五苓散辛甘合用治疗肥胖症的协同分子机制
  • 批准号:
    82305149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
射干麻黄汤辛宣苦泄“鼻肺-皮”TRPV1/TAS2R14受体调控γδT细胞治疗过敏性鼻炎哮喘综合征的免疫机制
  • 批准号:
    82374529
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
辛同调在周期轨问题中的应用
  • 批准号:
    12301081
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相干伊辛计算与移动通信融合机理及关键技术研究
  • 批准号:
    62371050
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
computation and applications of symplectic field theory
辛场论的计算与应用
  • 批准号:
    19K23404
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Symplectic剛性の研究
辛刚度研究
  • 批准号:
    16J01830
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
  • 批准号:
    1636665
  • 财政年份:
    2016
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Foundations of Symplectic Field Theory
辛场论基础
  • 批准号:
    157897074
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了