Electroactive Organic Materials and Nanoscale Patterning Strategies for Photovoltaic Devices

光伏器件的电活性有机材料和纳米级图案化策略

基本信息

  • 批准号:
    0513416
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Technical. This project explores new materials and strategies for improved solar cells. Society relies heavily on inexpensive sources of environmentally sound energy and faces a crisis in the years ahead. Photovoltaic devices based on easily processed conjugated organic materials are potential candidates for application as cost-effective, large area solar cells. This project investigates organic films whose morphology, absorptive and electrical properties are suitable for photovoltaic applications. The research involves collaboration between Mary Galvin's group in Materials Science and Engineering at the University of Delaware who bring expertise in polymer synthesis and characterization and Lewis Rothberg's group in Chemistry at the University of Rochester who are experienced in measuring optical and electrical properties of materials and in using them to make devices. The project aims for organic films which satisfy the following criteria: 1) Donor and acceptor moieties are separated by around 10 - 20 nm, approximately the diffusion length for typical excited states in organic solids, to facilitate charge separation. 2) Donor and acceptor materials are spatially organized into bicontinuous networks spanning the film to suppress encounters of photogenerated electrons and holes that might result in recombination. 3) Film thicknesses are relatively small to accommodate low voltage operation but the films need to absorb as much light as possible. 4) Optical absorption is strong in the red and near-infrared spectral regions to match the solar spectrum.Two approaches to nanometer scale organization of electron transporting acceptor ("n-type") and hole transporting donor ("p-type") conjugated polymers will be investigated. The first relies on novel block copolymers with covalently linked p-type and n-type blocks that will be driven to spontaneously phase segregate by incompatible side group architectures. The second relies on nanoscale organization of new discotic-like branched n-type and p-type conjugated "X" polymers using electrochemically produced porous alumina templates. Both strategies allow for separation on the optimal length scale and independent control over HOMO and LUMO positions for good separation efficiency and match to contact work functions. Galvin will also design red chromophores to address solar spectrum match and Rothberg will experiment with metal nanoparticle plasmon-enhancement of the polymer absorption. These strategies will be evaluated by characterization of film morphology, study of relevant photophysical properties, and fabrication of photovoltaic devices. Nontechnical. The project addresses fundamental materials research with strong technological relevance to electronics and photonics, and effectively integrates research and education. The project facilitates interdisciplinary education of students in a collaborative environment. The PI collaborations to date have involved exchange and training of students pursuing Ph.D. degrees in Chemistry, Materials Science, Physics and Chemical Engineering. In addition, Galvin and Rothberg both incorporate electronic materials into the lecture and laboratory curricula at the graduate and undergraduate levels. The PIs participate in community outreach through the Science Museum, girls programs, high school student involvement in research and the REU and RET programs. The research itself is a promising approach to an important technology that may help the world population to meet its energy needs in an environmentally responsible fashion.
技术的。该项目探讨了改进太阳能电池的新材料和策略。社会在很大程度上依靠廉价的环境能源来源,并在未来几年面临危机。基于易于加工的共轭有机材料的光伏设备是作为具有成本效益的大面积太阳能电池应用的潜在候选者。该项目研究了有机膜的形态,吸收性和电性能适用于光伏应用。这项研究涉及特拉华大学玛丽·加尔文(Mary Galvin)在材料科学与工程学的小组之间的合作,他们在罗切斯特大学(University of Rochester)的聚合物合成和特征方面的专业知识与刘易斯·罗斯伯格(Lewis Rothberg)的化学小组,他们在衡量材料的光学和电气性能方面经验丰富,并在材料的光学和电气中经验丰富。该项目的目的是满足以下标准的有机膜:1)供体和受体部分的分离约10-20 nm,大约是有机固体中典型激发态的扩散长度,以促进电荷分离。 2)供体材料和受体材料被空间组织到跨膜的双连续网络中,以抑制可能导致重组的光生电子和孔的相遇。 3)膜厚度相对较小,可以容纳低压操作,但膜需要尽可能吸收光线。 4)在红色和近红外光谱区域中,光吸收很强。第一个依赖于新型的块共聚物,它们具有共价连接的P型和N型块,这些块将被驱动到通过不兼容的侧组体系结构自发隔离。第二个依赖于使用电化学产生的多孔氧化铝模板的新型盘状分支N型N型和P型共轭的“ X”聚合物的纳米级组织。两种策略都可以在最佳长度尺度上进行分离,并独立控制HOMO和LUMO位置,从而获得良好的分离效率,并匹配以接触工作功能。加尔文还将设计红色发色团来解决太阳光谱匹配,罗斯伯格将尝试使用聚合物吸收的金属纳米粒子等离子体增强。这些策略将通过表征膜形态的表征,相关的光物理特性的研究以及光伏设备的制造来评估。 非技术。该项目涉及与电子和光子学具有很强技术相关的基本材料研究,并有效地整合了研究和教育。该项目促进了在协作环境中对学生的跨学科教育。迄今为止,PI合作涉及攻读博士学位的学生的交流和培训。化学,材料科学,物理和化学工程学位。此外,Galvin和Rothberg都将电子材料纳入了毕业生和本科水平的讲座和实验室课程中。 PI通过科学博物馆,女子计划,高中生参与研究以及REU和RET计划的参与社区宣传。该研究本身是一种重要的技术方法,可以帮助世界人口以环境负责的方式满足其能源需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Rabolt其他文献

John Rabolt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Rabolt', 18)}}的其他基金

Multi-Scale Investigation of Metastable Phases in Sustainable Polymers
可持续聚合物亚稳相的多尺度研究
  • 批准号:
    1809977
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SusChEM: Studies of Molecular Orientation, Degradation and Thermoreversible Gelation in Environmentally Sustainable Polymers: Poly(hydroxybutyrates) and Their Copolymers
SusChEM:环境可持续聚合物中的分子取向、降解和热可逆凝胶化研究:聚(羟基丁酸酯)及其共聚物
  • 批准号:
    1407255
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Recent Advances in Electrospinning
静电纺丝的最新进展
  • 批准号:
    1419617
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ACS Symposium entitled "NMR Spectroscopy of Polymers: Solutions, Melts, and Solid State," April 6-10, 2008, New Orleans, LA
题为“聚合物核磁共振光谱:溶液、熔体和固态”的 ACS 研讨会,2008 年 4 月 6-10 日,路易斯安那州新奥尔良
  • 批准号:
    0811141
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electric Field Effects on the Conformation, Crystal Structure, and Molecular Orientation of Polymer Micro- and Nanofibers Electrospun from Solution
电场对溶液电纺聚合物微纳米纤维构象、晶体结构和分子取向的影响
  • 批准号:
    0704970
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Structure Property Relations in a Novel Class of Electroactive Star Molecules
一类新型电活性星形分子的结构性质关系
  • 批准号:
    0513348
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Application of Dynamic Spectroscopic Methods to the Rheo-Optical Characterization of Polymers
动态光谱方法在聚合物流变光学表征中的应用
  • 批准号:
    0315461
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Symposium "NMR Spectroscopy of Polymers", at the ACS Meeting, New Orleans, LA
“聚合物核磁共振光谱”研讨会,在 ACS 会议上,路易斯安那州新奥尔良
  • 批准号:
    0321515
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NIRT: Enhancing the Properties of Nanoscale Electrospun Polymer Fibers thru Chemical Architecture, Surface Texturing Optimization Processing Protocols
NIRT:通过化学结构、表面纹理优化加工方案增强纳米级静电纺聚合物纤维的性能
  • 批准号:
    0210223
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于碳-硫键断裂的电催化还原交叉偶联及其在有机半导体材料中的应用
  • 批准号:
    52303019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高压下均苯三甲酸基La、Sc和Lu金属有机框架材料的结构调控和蓝光增强研究
  • 批准号:
    12304261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于全窄带隙材料的半透明有机光伏器件研究
  • 批准号:
    62305350
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶硼氮稠环的窄谱带有机蓝光材料及其电致发光器件研究
  • 批准号:
    22375130
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超微孔桨轮型金属有机框架材料的设计合成及其对氢同位素吸附分离研究
  • 批准号:
    22376149
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Organic Materials Discovery with the Aid of Digital Crystallography
职业:借助数字晶体学发现有机材料
  • 批准号:
    2410178
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
  • 批准号:
    24K17650
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
  • 批准号:
    2413574
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了