Compatible and Nearly Compatible Finite Element Discretizations: Algorithms, Analysis and Applications
兼容和近兼容有限元离散化:算法、分析和应用
基本信息
- 批准号:0512673
- 负责人:
- 金额:$ 18.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator is studying connections between conventional finite elementmethods and the cutting edge discontinuous Galerkin method. Only recently hasit been discovered that the differential operators discretized via thesephilosophically distinct methods have closely related eigenspectra. Theinvestigator is synthesizing analytical and numerical tools from both fields toexamine and improve the robustness of the latter method when used with highlynon-conforming discretization resolution. In addition, the investigator and agraduate student are creating an object oriented library which allowsnon-experts to use combinations of these methods through a simple and intuitiveinterface.As new techniques for computational simulation of physical phenomena aredeveloped, it is extremely important to determine under what circumstances theyperform at their best and in a predictable way. There has been significantinterest in the recently developed discontinuous Galerkin simulation method,because it can solve large scale problems not readily attainable with existingmethods. For example, these methods can potentially increase the accuracy,efficiency, and scope of modeling radar scattering from large complex aircraft.The investigator is studying how to predict when this new method will givephysically reasonable solutions, for example in computing the noise generatedby next generation aircraft. The end product of this investigation will be aset of guidelines on how and when to best use the methods. Furthermore, theinvestigator is developing a software library which will ease transfer of thesehigh resolution methods by simplifying the process of rapid prototyping andtesting of new critical core components for physics simulation tools.
研究人员正在研究传统有限元方法和尖端的不连续伽辽金方法之间的联系。直到最近才发现,通过这些哲学上不同的方法离散的微分算子具有密切相关的特征谱。 研究人员正在综合两个领域的分析和数值工具,以检查和提高后一种方法在与高度不一致的离散分辨率一起使用时的鲁棒性。此外,研究人员和研究生正在创建一个面向对象的库,该库允许非专家通过简单直观的界面组合使用这些方法。随着物理现象计算模拟新技术的开发,确定在什么情况下使用这些方法变得极其重要他们以可预测的方式发挥出最佳水平。最近开发的间断伽辽金模拟方法引起了人们的极大兴趣,因为它可以解决现有方法难以解决的大规模问题。例如,这些方法可以潜在地提高大型复杂飞机雷达散射建模的准确性、效率和范围。研究人员正在研究如何预测这种新方法何时给出物理上合理的解决方案,例如计算下一代飞机产生的噪声。这项调查的最终产品将是一套关于如何以及何时最好地使用这些方法的指南。此外,研究人员正在开发一个软件库,该软件库将通过简化物理模拟工具的新关键核心组件的快速原型设计和测试过程来简化这些高分辨率方法的传输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Warburton其他文献
Timothy Warburton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Warburton', 18)}}的其他基金
Collaborative Research: Tuning-Free Adaptive Multilevel Discontinuous Galerkin Methods for Maxwell's Equations
合作研究:麦克斯韦方程组的免调优自适应多级间断伽辽金方法
- 批准号:
0810187 - 财政年份:2008
- 资助金额:
$ 18.62万 - 项目类别:
Continuing Grant
Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
- 批准号:
0514002 - 财政年份:2004
- 资助金额:
$ 18.62万 - 项目类别:
Continuing Grant
Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
- 批准号:
0324911 - 财政年份:2004
- 资助金额:
$ 18.62万 - 项目类别:
Continuing Grant
相似国自然基金
几乎完全非线性函数的若干关键问题研究
- 批准号:62372221
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
几乎完全非线性函数的构造研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一维几乎周期测度薛定谔算子的谱理论
- 批准号:12271509
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
不完全信息下基于几乎随机占优的决策优化问题研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
几乎非负曲率的拓扑障碍
- 批准号:12171364
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Occupational exposure to ionizing radiation and the impacts on cancer incidence, and mortality: a record linkage cohort study of nearly one million workers in the Canadian National Dose Registry
电离辐射的职业暴露及其对癌症发病率和死亡率的影响:一项针对加拿大国家剂量登记处近百万工人的创纪录的连锁队列研究
- 批准号:
480070 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Operating Grants
Heuristics and Biases are (Nearly) Optimal: A Fresh Programmatic Study of Heuristics and Biases in Human Decision-Making
启发式和偏见(几乎)最优:人类决策中启发式和偏见的一项新的程序研究
- 批准号:
RGPIN-2021-03434 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
Discovery Grants Program - Individual
Hydrocarbon Analysis of Contaminated Beach Sediments in Cape Hatt, NU, Nearly Forty Years After Application
应用近四十年后,NU 哈特角受污染海滩沉积物的碳氢化合物分析
- 批准号:
575886-2022 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
- 批准号:
22H01146 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heuristics and Biases are (Nearly) Optimal: A Fresh Programmatic Study of Heuristics and Biases in Human Decision-Making
启发式和偏见(几乎)最优:人类决策中启发式和偏见的一项新的程序研究
- 批准号:
RGPIN-2021-03434 - 财政年份:2021
- 资助金额:
$ 18.62万 - 项目类别:
Discovery Grants Program - Individual