Collaborative Research: Multivariable Moments and Factorizations and Other Problems in Analysis
合作研究:多变量矩和因式分解以及其他分析问题
基本信息
- 批准号:0500641
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPIs Geronimo and Woerdeman will continue their investigations intofactorization and extension problems. In particular we hope todevelop a constructive proof of the celebrated Ferguson-Laceyextension theorem and build on it using the results we haverecently obtained on the spectral factorization of positive twovariable trigonometric polynomials. We plan to investigate in moredetail fast algorithms for computing the structured matrices thatarise from the two variable trigonometric moment problem as well as study the orthogonal polynomials that arise in this case. The PIsalso plan to continue their individual investigation into theimportant problems arising from quantum computing and theasymptotics of solutions to 2nd order difference equations.The types of structured matrices under study here arise in manyproblems of practical interest such as two variableauto-regressive models and two variable filtering. The PIs willtry to recruit more undergraduate and graduate students to help inthese problems as well as give courses and lectures at conferencesto increase the impact of their efforts. In order to make theintellectual merit of the proposal apparent the PIs will continueto publish their results in well respected journals, and alsodisseminate them via the PIs' homepages, preprint servers such asarXiv, software sharing websites, etc.
摘要 Geronimo 和 Woerdeman 将继续研究因式分解和扩展问题。特别是,我们希望对著名的弗格森-莱西扩张定理提出一个建设性的证明,并利用我们最近在正双变量三角多项式的谱分解上获得的结果来建立它。我们计划更详细地研究用于计算由二变量三角矩问题产生的结构化矩阵的快速算法,并研究在这种情况下出现的正交多项式。 PI还计划继续对量子计算和二阶差分方程解的渐近性产生的重要问题进行单独研究。这里研究的结构化矩阵类型出现在许多实际感兴趣的问题中,例如二变量自回归模型和二变量滤波。 PI 将尝试招募更多的本科生和研究生来帮助解决这些问题,并在会议上提供课程和讲座,以增加他们的努力的影响力。为了使该提案的智力价值显而易见,PI将继续在备受推崇的期刊上发表他们的研究结果,并通过PI的主页、预印本服务器(如sarXiv)、软件共享网站等进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Geronimo其他文献
Circadian Rhythm: Population of Interacting Neurons
昼夜节律:相互作用的神经元群
- DOI:
10.1126/science.174.4006.299 - 发表时间:
1971-10-15 - 期刊:
- 影响因子:56.9
- 作者:
J. Jacklet;Jeffrey Geronimo - 通讯作者:
Jeffrey Geronimo
Jeffrey Geronimo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Geronimo', 18)}}的其他基金
Two Variable Extension and Factorization Problems with Applications to Wavelets
小波应用中的两变量扩展和因式分解问题
- 批准号:
0200219 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Some Problems in Orthogonal Polynomials and Wavelets
正交多项式和小波的一些问题
- 批准号:
9970613 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: ImageTech - A Conference on the Mathematics of Imaging and Applications; March 17-20, 1996; Atlanta, Georgia
数学科学:ImageTech - 成像与应用数学会议;
- 批准号:
9530041 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: One Higher Dimensional Wavelets fromFractal Interpolation Functions: Construction and Applications
数学科学:分形插值函数的一个高维小波:构造和应用
- 批准号:
9401352 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Orthogonal Polynomials
数学科学:正交多项式
- 批准号:
9005944 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Orthogonal Polynomials
数学科学:正交多项式
- 批准号:
8620079 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
Orthogonal Polynomials, Julia Sets, and Invariant Measures (Mathematical Sciences)
正交多项式、Julia 集和不变测度(数学科学)
- 批准号:
8203325 - 财政年份:1982
- 资助金额:
-- - 项目类别:
Continuing Grant
Scattering Theory and Orthogonal Polynomials
散射理论和正交多项式
- 批准号:
8002731 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
多变量函数型失效模式挖掘方法研究
- 批准号:72361028
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
快速精准大量类分类的拓扑优化多变量决策树及其集成方法研究
- 批准号:62306231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单次曝光的多变量高分辨相干衍射成像技术研究
- 批准号:62305220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于稀疏观测多变量同化的湖泊富营养化动力学机制及水华预测研究
- 批准号:42371367
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多变量可调发动机模态转换过程匹配机理研究
- 批准号:52372397
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
COLLABORATIVE RESEARCH: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2227939 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2227939 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2121110 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2121101 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Improving Conceptual Understanding of Multivariable Calculus Through Visualization Using CalcPlot3D
协作研究:使用 CalcPlot3D 通过可视化提高对多变量微积分的概念理解
- 批准号:
1523786 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant