COLLABORATIVE RESEARCH: NANOMESO: A NSF-EC Cooperative Activity in Computational Research to Study Nano/Meso Length Scale Effects on Crystal Plasticity
合作研究:NANOMESO:一项 NSF-EC 计算研究合作活动,旨在研究纳米/介观长度尺度对晶体可塑性的影响
基本信息
- 批准号:0502208
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-15 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL EXPLANATION This collaborative award is made in response to proposals submitted to the FY05 NSF-EC Cooperative Activity in Computational Materials Research. The project involves the Ohio State University, Stanford University and Los Alamos National Laboratory in the US and collaborating institutions in Switzerland, Germany and the Netherlands. The aim of this cooperative activity is to develop and validate a computational approach to understand and predict unique plasticity phenomena at the nano and sub-micron scales. In recent years, a combination of advances in synthesis, characterization, and computational techniques has revealed striking plasticity phenomena that are not explained by traditional crystal plasticity theories or even more recent strain gradient theories. These phenomena are associated with shrinking sample size to the sub-micron regime and decreasing structural length scales such as grain size to the nano-scale regime. An exciting prospect is that new deformation regimes have been identified which, if understood, could enable the development of materials with unrivaled strength. Thus, the primary impact of the proposed work is an understanding of material strength at length scales not addressed by current plasticity theories. Such an activity is expected to impact our understanding of strength and work hardening in thin films and guide our understanding of appropriate material parameters for small-scale devices used in MEMS.The high intellectual merit of this project derives from a goal to address the fundamental nature of plasticity posed by sub-micron and nano-scale samples, and from the creative process by which ab initio, atomistic, and Peierls approaches to computational materials science are used to support a direct comparison between dislocation dynamics level modeling and novel micro-pillar and in-situ x-ray diffraction verification techniques. The inadequacies of current plasticity theories, including strain gradient formulations, will be addressed via a systematic approach in which the kinetics of cross slip and role of free surfaces and grain boundaries as sources and sinks will be systematically studied. An exciting premise in this investigation is that sub-micron and nano-scale samples may derive extraordinary strength from "dislocation-starvation." A principle outcome is that the proposed, focused interaction among several computational techniques will provide the basis for a new plasticity theory for sub-micron and nano-scale components.The broader impact of the project draws from the current industrial and scientific thrusts to understand the properties of small devices. The research is aimed at enabling small mechanical device design and development, by providing a computational tool base with which to predict the mechanical properties of components as size and structure are diminished to the sub-micron and nano-scale. Our computational and experimental findings will be packaged into an open web site for use by the academic and industrial communities - particularly those in the US and EC - and will set a precedent for comprehensive, accessible computational materials results at the sub-micron scale.The educational impact will be enhanced by investigators who are commited to participation from under-represented groups, the unique educational exchange offered by an international collaboration, and a proposed series of web-based lectures to teach the basis of each of the computational materials methods to be used in this program.NON-TECHNICAL EXPLANATIONThis collaborative award is made in response to proposals submitted to the FY05 NSF-EC Cooperative Activity in Computational Materials Research. The project involves the Ohio State University, Stanford University and Los Alamos National Laboratory in the US and collaborating institutions in Switzerland, Germany and the Netherlands. The aim of this cooperative activity is to develop and validate a computational approach to understand and predict unique plasticity phenomena at the nano and sub-micron scales. In recent years, a combination of advances in synthesis, characterization, and computational techniques has revealed striking plasticity phenomena that are not explained by traditional crystal plasticity theories or even more recent strain gradient theories. These phenomena are associated with shrinking sample size to the sub-micron regime and decreasing structural length scales such as grain size to the nano-scale regime. An exciting prospect is that new deformation regimes have been identified which, if understood, could enable the development of materials with unrivaled strength. Thus, the primary impact of the proposed work is an understanding of material strength at length scales not addressed by current plasticity theories. Such an activity is expected to impact our understanding of strength and work hardening in thin films and guide our understanding of appropriate material parameters for small-scale devices used in MEMS.The high intellectual merit of this project derives from a goal to address the fundamental nature of plasticity posed by sub-micron and nano-scale samples, and from the creative process by which ab initio, atomistic, and Peierls approaches to computational materials science are used to support a direct comparison between dislocation dynamics level modeling and novel micro-pillar and in-situ x-ray diffraction verification techniques. The inadequacies of current plasticity theories, including strain gradient formulations, will be addressed via a systematic approach in which the kinetics of cross slip and role of free surfaces and grain boundaries as sources and sinks will be systematically studied. An exciting premise in this investigation is that sub-micron and nano-scale samples may derive extraordinary strength from "dislocation-starvation." A principle outcome is that the proposed, focused interaction among several computational techniques will provide the basis for a new plasticity theory for sub-micron and nano-scale components.The broader impact of the project draws from the current industrial and scientific thrusts to understand the properties of small devices. The research is aimed at enabling small mechanical device design and development, by providing a computational tool base with which to predict the mechanical properties of components as size and structure are diminished to the sub-micron and nano-scale. Our computational and experimental findings will be packaged into an open web site for use by the academic and industrial communities - particularly those in the US and EC - and will set a precedent for comprehensive, accessible computational materials results at the sub-micron scale.The educational impact will be enhanced by investigators who are commited to participation from under-represented groups, the unique educational exchange offered by an international collaboration, and a proposed series of web-based lectures to teach the basis of each of the computational materials methods to be used in this program.
技术说明 该合作奖项是针对提交给 2005 财年 NSF-EC 计算材料研究合作活动的提案而颁发的。 该项目涉及美国俄亥俄州立大学、斯坦福大学和洛斯阿拉莫斯国家实验室以及瑞士、德国和荷兰的合作机构。 这项合作活动的目的是开发和验证一种计算方法,以理解和预测纳米和亚微米尺度的独特塑性现象。 近年来,合成、表征和计算技术的进步相结合,揭示了传统晶体塑性理论甚至更新的应变梯度理论无法解释的惊人塑性现象。 这些现象与将样品尺寸缩小到亚微米范围以及将结构长度尺度(例如晶粒尺寸)减小到纳米尺度范围有关。 一个令人兴奋的前景是,已经确定了新的变形机制,如果能够理解这些机制,就可以开发出具有无与伦比强度的材料。 因此,所提出的工作的主要影响是理解当前塑性理论未解决的长度尺度上的材料强度。 此类活动预计将影响我们对薄膜强度和加工硬化的理解,并指导我们对 MEMS 中使用的小型器件的适当材料参数的理解。该项目的高智力价值源于解决基本性质的目标亚微米和纳米级样品所造成的可塑性,以及使用从头算、原子论和 Peierls 计算材料科学方法来支持位错动力学水平建模与新型微柱和原位X射线衍射验证技术。 当前塑性理论(包括应变梯度公式)的不足之处将通过系统方法得到解决,其中将系统地研究交叉滑移动力学以及自由表面和晶界作为源和汇的作用。 这项研究的一个令人兴奋的前提是,亚微米和纳米级样品可能从“位错饥饿”中获得非凡的强度。 主要成果是,所提出的几种计算技术之间的集中相互作用将为亚微米和纳米级部件的新塑性理论提供基础。该项目的更广泛影响源于当前的工业和科学推动力,以了解小型设备的特性。 该研究旨在通过提供计算工具库来实现小型机械设备的设计和开发,通过该工具库来预测随着尺寸和结构缩小到亚微米和纳米级的部件的机械性能。 我们的计算和实验结果将打包到一个开放网站中,供学术界和工业界(尤其是美国和欧盟的学术界和工业界)使用,并将为亚微米尺度的全面、可访问的计算材料结果开创先例。致力于代表性不足群体参与的研究人员、国际合作提供的独特教育交流以及拟议的一系列基于网络的讲座,以教授每种计算材料方法的基础,从而增强教育影响。在此使用的非技术解释该合作奖项是为了响应向 2005 财年 NSF-EC 计算材料研究合作活动提交的提案而颁发的。 该项目涉及美国俄亥俄州立大学、斯坦福大学和洛斯阿拉莫斯国家实验室以及瑞士、德国和荷兰的合作机构。 这项合作活动的目的是开发和验证一种计算方法,以理解和预测纳米和亚微米尺度的独特塑性现象。 近年来,合成、表征和计算技术的进步相结合,揭示了传统晶体塑性理论甚至更新的应变梯度理论无法解释的惊人塑性现象。 这些现象与将样品尺寸缩小到亚微米范围以及将结构长度尺度(例如晶粒尺寸)减小到纳米尺度范围有关。 一个令人兴奋的前景是,已经确定了新的变形机制,如果能够理解这些机制,就可以开发出具有无与伦比强度的材料。 因此,所提出的工作的主要影响是理解当前塑性理论未解决的长度尺度上的材料强度。 此类活动预计将影响我们对薄膜强度和加工硬化的理解,并指导我们对 MEMS 中使用的小型器件的适当材料参数的理解。该项目的高智力价值源于解决基本性质的目标亚微米和纳米级样品所造成的可塑性,以及使用从头算、原子论和 Peierls 计算材料科学方法来支持位错动力学水平建模与新型微柱和原位X射线衍射验证技术。 当前塑性理论(包括应变梯度公式)的不足之处将通过系统方法得到解决,其中将系统地研究交叉滑移动力学以及自由表面和晶界作为源和汇的作用。 这项研究的一个令人兴奋的前提是,亚微米和纳米级样品可能从“位错饥饿”中获得非凡的强度。 主要成果是,所提出的几种计算技术之间的集中相互作用将为亚微米和纳米级部件的新塑性理论提供基础。该项目的更广泛影响源于当前的工业和科学推动力,以了解小型设备的特性。 该研究旨在通过提供计算工具库来实现小型机械设备的设计和开发,通过该工具库来预测随着尺寸和结构缩小到亚微米和纳米级的部件的机械性能。 我们的计算和实验结果将打包到一个开放网站中,供学术界和工业界(尤其是美国和欧盟的学术界和工业界)使用,并将为亚微米尺度的全面、可访问的计算材料结果开创先例。致力于代表性不足群体参与的研究人员、国际合作提供的独特教育交流以及拟议的一系列网络讲座以教授每种计算材料方法的基础,将增强教育影响。在这个程序中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Nix其他文献
William Nix的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Nix', 18)}}的其他基金
U.S.-Germany Cooperative Research: Microstructure and Alloying Effects on the Reliability of Conductor Lines
美德合作研究:微观结构和合金化对导线可靠性的影响
- 批准号:
9513887 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Time-Dependent Plastic Flow in Metals and Alloys (Materials Research)
金属和合金中随时间变化的塑性流动(材料研究)
- 批准号:
8709772 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
Time Dependent Plastic Flow in Metals and Alloys (Materials Research)
金属和合金中随时间变化的塑性流动(材料研究)
- 批准号:
8203530 - 财政年份:1982
- 资助金额:
-- - 项目类别:
Continuing Grant
Acquisition of an Integrated Mechanical Testing Facility
收购综合机械测试设施
- 批准号:
8121420 - 财政年份:1982
- 资助金额:
-- - 项目类别:
Standard Grant
Application of Stress Change Experiments to the Study of High Temperature Creep
应力变化实验在高温蠕变研究中的应用
- 批准号:
7923942 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Continuing Grant
A New Technique For Studying Internal Stresses in Solids During High Temperature Creep
研究高温蠕变期间固体内应力的新技术
- 批准号:
7515477 - 财政年份:1975
- 资助金额:
-- - 项目类别:
Standard Grant
A Critical Appraisal of the Contribution of Grain Boundary Sliding to High Temperature Creep of Polycrystalline Solids
晶界滑动对多晶固体高温蠕变贡献的批判性评价
- 批准号:
7203081 - 财政年份:1972
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Salary Programs