CAREER: A Microsystems Approach to Cellular Manipulation and Interaction
职业:细胞操纵和交互的微系统方法
基本信息
- 批准号:0449400
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to engineer biologically compatible microsystems to study biomechanics and mechanotransduction of cells. Microscale sensors and actuators offer the potential to make measurements and manipulate at cellular and molecular levels with unprecedented sensitivity, spatial and temporal resolution. Microsystems will be developed to analyze simultaneously the mechanics, electrophysiology, and signaling processes of cells in real time; studies which are currently impossible to integrate in a single experiment. Goals of the research include: the real time study of single cells and layers of cells under multi-axis force loading coupled with electophysiological measurements and the integration of electromechanical and signaling measurement devices into arrays providing instrumented, actively controlled scaffolding for cell and tissue culture. New tissue-based control and measurement will be enabled, including mechanical loading, cell deformations, strain rates, and spatial variation of forces and electrical environments across tissues. Broader impacts include development of new cellular and tissue manipulation and measurement tools, calibration methodologies, and microsystems for in vitro biomechanics and biochemical evaluation. Mechanically coupled cell culture systems will enable a new understanding of mechanically gated functions such as bone growth, wound healing, and diseases related to mechanosensory malfunction such as arteriosclerosis and cancer - diseases affecting millions of Americans each year. Microsystems and methods for interacting with cells and manipulating biomechanics will be developed. Cell biomechanics related to differentiation, protein expression, and biochemistry will be integrated into accessible databases. The ultimate goal is the development of mechanically active substrates tailoring cell development to create engineered living tissues.
这项研究的目的是设计生物相容的微系统来研究细胞的生物力学和机械传导。 微型传感器和执行器提供了在细胞和分子水平上进行测量和操作的潜力,具有前所未有的灵敏度、空间和时间分辨率。将开发微系统以同时实时分析细胞的力学、电生理学和信号传导过程;目前不可能将这些研究整合到单个实验中。该研究的目标包括:实时研究多轴力负载下的单细胞和细胞层,结合电生理测量,以及将机电和信号测量装置集成到阵列中,为细胞和组织培养提供仪器化、主动控制的支架。新的基于组织的控制和测量将成为可能,包括机械载荷、细胞变形、应变率以及跨组织的力和电环境的空间变化。更广泛的影响包括开发新的细胞和组织操作和测量工具、校准方法以及用于体外生物力学和生化评估的微系统。机械耦合细胞培养系统将使人们对机械门控功能有新的认识,例如骨骼生长、伤口愈合,以及与机械感觉功能障碍相关的疾病,例如动脉硬化和癌症——每年影响数百万美国人的疾病。将开发与细胞相互作用和操纵生物力学的微系统和方法。与分化、蛋白质表达和生物化学相关的细胞生物力学将被整合到可访问的数据库中。最终目标是开发机械活性基质,调整细胞发育以创建工程活组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beth Pruitt其他文献
Beth Pruitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beth Pruitt', 18)}}的其他基金
BRITE Fellow: The Mechanobiology of Sex and Stress
BRITE 研究员:性与压力的机械生物学
- 批准号:
2227509 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
BRITE Fellow: The Mechanobiology of Sex and Stress
BRITE 研究员:性与压力的机械生物学
- 批准号:
2227509 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanobiology of Epithelial Monolayers under Shear Loading
剪切载荷下单层上皮的力学生物学
- 批准号:
1834760 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanobiology of Epithelial Monolayers under Shear Loading
剪切载荷下单层上皮的力学生物学
- 批准号:
1662431 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Student Travel - 12th International Workshop on Nanomechanical Sensing (NMC2015); Auckland, New Zealand.
学生旅行——第十二届纳米机械传感国际研讨会(NMC2015);
- 批准号:
1505547 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop:Student Travel - 10th International Workshop on Nanomechanical Sensing (NMC2013) To be held May 1-3 2013, Stanford, California
研讨会:学生旅行 - 第 10 届纳米机械传感国际研讨会 (NMC2013) 将于 2013 年 5 月 1-3 日在加利福尼亚州斯坦福举行
- 批准号:
1313779 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
EFRI-MIKS: Force Sensing and Remodeling by Cell-Cell Junctions in Multicellular Tissues
EFRI-MIKS:多细胞组织中细胞-细胞连接的力传感和重塑
- 批准号:
1136790 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
EFRI-CBE: Engineering of cardiovascular cellular interfaces and tissue constructs
EFRI-CBE:心血管细胞界面和组织结构的工程
- 批准号:
0735551 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
\NER: Coaxial Tip Piezoresistive Cantilever Probes for High-Resolution Scanning Gate Microscopy
NER:用于高分辨率扫描门显微镜的同轴尖端压阻悬臂探针
- 批准号:
0708031 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Advancing Epilepsy Diagnosis with Flexible, High-Resolution Thin-Film Electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
- 批准号:
10753771 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Advancing epilepsy diagnosis with flexible, high-resolution thin-film electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
- 批准号:
10297290 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
- 批准号:
10557094 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Biophysical-based approach for controlling blood vessel structure and function
基于生物物理学的控制血管结构和功能的方法
- 批准号:
9903445 - 财政年份:2018
- 资助金额:
-- - 项目类别:
A Biomimetic Approach Towards a Dexterous Neuroprosthesis
灵巧神经假体的仿生方法
- 批准号:
10341043 - 财政年份:2018
- 资助金额:
-- - 项目类别: