ACT/SGER: Algorithms for Large-Scale Approximate Nonnegative Matrix Factorization in Data Analysis

ACT/SGER:数据分析中大规模近似非负矩阵分解的算法

基本信息

  • 批准号:
    0442065
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-15 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

In data analysis applications where physical data can only take nonnegative values such as pixels in imagery data, it is desirable to obtain physically meaningful ``nonnegative principal parts'', and then represent data as additive combinations of these parts. This leads to the approximate nonnegative matrix factorization (ANMF) problem, which is a constrained, nonconvex global minimization problem. The existing algorithms for ANMF are relatively expensive and not suitable for large-scale, real-time applications. The investigator proposes to reformulate a normalized ANMF problem into a low-dimensional optimization problem, thus reducing the problem size by a potentially very large factor. With the help of geometric insights from the new formulation, the project will focus on developing robust and efficient new algorithms suitable for very large-scale and real-time applications. The goal is to advance the fundamentals of ANMF and realize its full potential as a powerful data analysis tool.Can a computer identify a person, in a few seconds and with a high degree of confidence, by comparing a snapshot of his to some, perhaps old and low-quality, photos stored in a database? Approximate nonnegative matrix factorization (ANMF) is an emerging technique that may help solve this face detection problem and other real-time data analysis problems. In this project, the investigator will study novel mathematical formulations and develop new computer algorithms for solving the ANMF problems more quickly and more reliably.This award is supported jointly by the NSF and the Intelligence Community. The Approaches to Terrorism program in the Directorate for Mathematics and Physical Sciences supports new concepts in basic research and workforce development with the potential to contribute to national security.
在数据分析应用程序中,物理数据只能在图像数据中使用非负值(例如像素),希望获得物理有意义的``非负主部分'',然后将数据表示为这些部分的加法组合。 这导致了近似的非负矩阵分解(ANMF)问题,这是一个受约束的非凸全局最小化问题。 ANMF的现有算法相对昂贵,不适合大规模的实时应用。 研究人员建议将归一化的ANMF问题重新制定为低维优化问题,从而将问题大小减少到潜在的大因素。 在新配方的几何见解的帮助下,该项目将着重于开发适用于非常大规模和实时应用的稳健有效的新算法。 目的是推进ANMF的基本原理,并实现其作为强大的数据分析工具的全部潜力。计算机可以在几秒钟内将一个人与某些(可能是古老且低质量)的快照相提并论,并具有高度的信心,并存储在数据库中? 近似非负矩阵分解(ANMF)是一种新兴技术,可以帮助解决此面部检测问题和其他实时数据分析问题。 在这个项目中,研究人员将研究新颖的数学表述,并开发新的计算机算法,以更快,更可靠地解决ANMF问题。该奖项由NSF和情报界共同支持。数学和物理科学局中恐怖主义计划的方法支持基础研究和劳动力发展中的新概念,有可能为国家安全做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Yin Zhang其他文献

Mass and force sensing of an adsorbate on a string resonator sensor
弦谐振器传感器上吸附物的质量和力传感
GroRec: A Group-Centric Intelligent Recommender System Integrating Social, Mobile and Big Data Technologies
Research trends in flipped classroom empirical evidence from 2017 to 2018
2017-2018年翻转课堂实证证据研究趋势
  • DOI:
    10.1108/itse-10-2018-0082
    10.1108/itse-10-2018-0082
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zamzami Zainuddin;Yin Zhang;Xiuhan Li;S. Chu;S. Idris;Cut Muftia Keumala
    Zamzami Zainuddin;Yin Zhang;Xiuhan Li;S. Chu;S. Idris;Cut Muftia Keumala
  • 通讯作者:
    Cut Muftia Keumala
    Cut Muftia Keumala
Bistatic sea clutter returns generation with computational electromagnetic method
双基地海杂波返回用计算电磁法产生
Rational Design of Multifunctional Integrated Host Configuration with Lithiophilicity-Sulfiphilicity toward High-Performance Li–S Full Batteries
面向高性能锂硫全电池的亲硫亲硫多功能集成主机配置的合理设计
  • DOI:
    10.1002/adfm.202006033
    10.1002/adfm.202006033
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Yunhong Wei;Boya Wang;Yin Zhang;Mi Zhang;Qian Wang;Yun Zhang;Hao Wu
    Yunhong Wei;Boya Wang;Yin Zhang;Mi Zhang;Qian Wang;Yun Zhang;Hao Wu
  • 通讯作者:
    Hao Wu
    Hao Wu
共 499 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往

Yin Zhang的其他基金

Highly Scalable Algorithms and Solvers for Eigen-Problems: Unconstrained Optimization and Multiple Power Iterations
用于特征问题的高度可扩展的算法和求解器:无约束优化和多次幂迭代
  • 批准号:
    1418724
    1418724
  • 财政年份:
    2014
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
SBIR Phase I: Micro-Cloud Managed Web-based Peer-to-Peer Video Streaming
SBIR 第一阶段:微云管理的基于 Web 的点对点视频流
  • 批准号:
    1248447
    1248447
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
CIF: Small: Compressive Network Analytics
CIF:小型:压缩网络分析
  • 批准号:
    1117009
    1117009
  • 财政年份:
    2011
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Building Up the Optimization Algorithmic Infrastructure for Data-Driven Knowledge Discovery and Recovery
构建数据驱动知识发现和恢复的优化算法基础设施
  • 批准号:
    1115950
    1115950
  • 财政年份:
    2011
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
IHCS: Collaborative Research: Compressive Spectrum Sensing in Cognitive Radio Networks
IHCS:协作研究:认知无线电网络中的压缩频谱感知
  • 批准号:
    1028790
    1028790
  • 财政年份:
    2010
  • 资助金额:
    --
    --
  • 项目类别:
    Continuing Grant
    Continuing Grant
NetSE: Small: Multi-Resolution Analysis of Network Matrices
NetSE:小型:网络矩阵的多分辨率分析
  • 批准号:
    0916309
    0916309
  • 财政年份:
    2009
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Practical Optimization Algorithms for Large-Scale Image and Data Processing
大规模图像和数据处理的实用优化算法
  • 批准号:
    0811188
    0811188
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: NeTS-NBD: Traffic Engineering in an Uncertain World
合作研究:NeTS-NBD:不确定世界中的流量工程
  • 批准号:
    0627020
    0627020
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: SMART -- A Scalable Monitoring, Analysis, and Response Toolkit for the Internet
职业:SMART——适用于互联网的可扩展监控、分析和响应工具包
  • 批准号:
    0546720
    0546720
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
    Continuing Grant
    Continuing Grant
Robust Solutions to Constrained Optimization Problems with Uncertain Parameters
具有不确定参数的约束优化问题的鲁棒解决方案
  • 批准号:
    0405831
    0405831
  • 财政年份:
    2004
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant

相似海外基金

SGER: Online Algorithms for Delay Sensitive Multiparty Session Communication
SGER:延迟敏感多方会话通信的在线算法
  • 批准号:
    0841388
    0841388
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
SGER: Collaborative Research: Non-negative Matrix Factorizations for Data Mining: Algorithms and Applications
SGER:协作研究:数据挖掘的非负矩阵分解:算法和应用
  • 批准号:
    0844513
    0844513
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
III-SGER: Algorithms for Next-Generation Protein Modeling: Beyond Pair-wise Interactions
III-SGER:下一代蛋白质建模算法:超越成对相互作用
  • 批准号:
    0848389
    0848389
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
SGER: Cooperative Learning-unlearning Algorithms for Identification of Robust Auditory Manifolds
SGER:用于识别鲁棒听觉流形的合作学习-忘却算法
  • 批准号:
    0836278
    0836278
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
SGER: Collaborative Research: Non-negative Matrix Factorizations for Data Mining: Algorithms and Applications
SGER:协作研究:数据挖掘的非负矩阵分解:算法和应用
  • 批准号:
    0844497
    0844497
  • 财政年份:
    2008
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant