ITR: Collaborative Research: (ASE+NHS+EVS)-(sim+dmc+int): In Silico De Novo Protein Design: A Dynamically Data Driven, (DDDAS), Computational and Experimental Framework

ITR:协作研究:(ASE NHS EVS)-(sim dmc int):计算机从头蛋白质设计:动态数据驱动、(DDDAS)、计算和实验框架

基本信息

  • 批准号:
    0427103
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-15 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTPI: Dimitrios Morikis Institution: University of California RiversideProposal Number: 0427103Research: A challenge in computational protein design is the discovery of novel proteins, which are compatible with either target template structures or arbitrarily three dimensional structures. This research is a dynamically data driven application systems, (DDDAS), effort through an integrative research framework, (i.e., computational, physicochemical, and biochemical approaches) for the in silico de novo design of peptides and proteins. The primary aims of the project are (i) in silico sequence selection and folding specificity calculations through a novel computational framework that is based on mixed-integer optimization and deterministic global optimization, (ii) in vitro and in silico characterization via NMR, structure determination, and molecular dynamics, (iii) protein expression, structural characterization and activity measurements of predicted sequences, and (iv) the development of a web-based WorkBench support system for de novo peptide/protein design which will be freely available to all researchers. The biological systems for testing and validating the proposed framework include the C3a anaphylatoxin (aims (i)-(iv)), and human beta defensins (aims (i), molecular dynamics of (ii) and (iv)). Intellectual Merit:The planned effort involves an interdisciplinary team (Floudas, Lambris, Morikis) from three institutions (Princeton, U. Penn, U. California at Riverside). Their expertise spans the fields of complement biology, protein chemistry, structural biology, mathematical modeling and analysis, combinatorial and global optimization, scientific computing, and bioengineering, and the project is an integrative computational and experimental effort. These developments can expedite significantly the drug discovery process, address important tasks in the design of new drugs, and the proposed novel concept of a web-based WorkBench will be the first such service to the scientific community. Broader Impacts: Using IT and DDDAS techniques, in a uniquely symbiotic computational and experimental framework, this project will lay the groundwork for making significant advances in the discovery of new drugs. This framework for in silico prediction of new sequences which fold selectively to structural templates and their experimental validation will allow rapid screening of novel alternatives and will lead into better and faster drug discovery which has direct impact in our society. The proposed effort integrates participation of graduate students, postdoctoral students, and undergraduate students into the research, thereby providing multidisciplinary training opportunities. The co-PIs have records in research with undergraduate students as part of their junior independent work, as well as senior thesis work. All three institutions have policies for attracting students and employees from traditionally under-represented groups. The co-PIs are committed to working with these students and will work pro-actively to attract them to this research project, the seminar series, the journal club, and the graduate level course. The co-PIs have strong records of educating undergraduate and graduate students, and post-doctoral associates from under-represented groups. The results of the research will be disseminated to the entire scientific community through publications in archival journals, refereed proceedings, and via presentations at conferences. Furthermore, the development of the web-based WorkBench for the de novo design of peptide/proteins will provide, for the first time, service to the scientific community.
摘要:Dimitrios Morikis 机构:加州大学河滨分校提案编号:0427103 研究:计算蛋白质设计的挑战是发现与目标模板结构或任意三维结构兼容的新型蛋白质。这项研究是一个动态数据驱动的应用系统(DDDAS),通过综合研究框架(即计算、物理化学和生化方法)进行肽和蛋白质的计算机从头设计。该项目的主要目标是(i)通过基于混合整数优化和确定性全局优化的新型计算框架进行计算机序列选择和折叠特异性计算,(ii)通过 NMR 进行体外和计算机表征、结构测定和分子动力学,(iii)预测序列的蛋白质表达、结构表征和活性测量,以及(iv)开发用于从头肽/蛋白质设计的基于网络的工作台支持系统,该系统将免费提供给所有研究人员。用于测试和验证所提出框架的生物系统包括 C3a 过敏毒素(目标 (i)-(iv))和人类 β 防御素(目标 (i)、分子动力学 (ii) 和 (iv))。智力优势:计划的工作涉及来自三个机构(普林斯顿大学、宾夕法尼亚大学、加州大学河滨分校)的跨学科团队(Floudas、Lambris、Morikis)。他们的专业知识涵盖补体生物学、蛋白质化学、结构生物学、数学建模和分析、组合和全局优化、科学计算和生物工程领域,该项目是一项综合计算和实验工作。这些发展可以显着加快药物发现过程,解决新药设计中的重要任务,并且所提出的基于网络的工作台的新概念将是向科学界提供的第一个此类服务。 更广泛的影响:该项目将利用 IT 和 DDDAS 技术,在独特的共生计算和实验框架中,为新药发现方面取得重大进展奠定基础。这种对选择性折叠到结构模板的新序列进行计算机预测的框架及其实验验证将允许快速筛选新的替代方案,并将导致更好更快的药物发现,这对我们的社会产生直接影响。拟议的努力将研究生、博士后学生和本科生的参与整合到研究中,从而提供多学科培训机会。联合 PI 拥有与本科生一起进行研究的记录,作为他们初级独立工作以及高级论文工作的一部分。这三个机构都制定了吸引传统上代表性不足群体的学生和员工的政策。联合 PI 致力于与这些学生合作,并将积极主动地吸引他们参加本研究项目、研讨会系列、期刊俱乐部和研究生课程。共同PI在教育本科生和研究生以及来自代表性不足群体的博士后方面拥有良好的记录。研究结果将通过档案期刊上的出版物、审稿程序以及会议上的演讲向整个科学界传播。此外,用于肽/蛋白质从头设计的基于网络的工作台的开发将首次为科学界提供服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Morikis其他文献

Dimitrios Morikis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了