ITR: COLLABORATIVE RESEARCH: -(ASE+NHS)-(dmc+int): Diagnosis and Assessment of Faults, Misbehavior and Threats in Distributed Systems and Networks

ITR:协作研究:-(ASE NHS)-(dmc int):分布式系统和网络中的故障、不当行为和威胁的诊断和评估

基本信息

项目摘要

The proposed research develops theory and techniques for monitoring and diagnosing faults, hazards or, more gener-ally,functional changes in dynamic systems and networks, under limited and possibly corrupted information. We presenta unifying and multifaceted approach to this problem that decomposes the large body of fault diagnosis research into sixtopics: (i) deterministic fault diagnosis, (ii) model-based probabilistic diagnosis, (iii) adaptive and sequential diagnosis,(iv) distributed system-level diagnosis with communication constraints in wired/wireless networks, (v) fault diagnosisvia distributed belief propagation algorithms, and (vi) model-independent diagnosis. The research team will leverageits expertise in the areas of fault diagnosis, sequential detection, system-level diagnosis, distributed control, modeling,analysis and performance evaluation, applied probability, graph theory, belief propagation and model reduction to theproblem of detecting, identifying and localizing faults and abnormalities in dynamically evolving environments. Beyondintellectual value, the research program proposed will have broader impacts in a variety of ways.Broader Impact: Networks and networked systems are increasingly solidifying their roles as building blocks of thenation's economic and social foundation. Numerous emerging commercial, governmental, medical, military and securityapplications are vitally dependent on these systems, creating a growing need for ensuring that these critical infrastructuresare reliable and trustworthy in spite of malicious or non-malicious disruptions. Building trustworthy networked systemsusing off-the-shelf components and software presents a significant hurdle that needs to be overcome in order to exploit thefull potential of networked systems. The proposed project outlines a synergistic and comprehensive approach for scalablemethodologies for diagnosing faults, adversarial behavior and threats in complex systems and networks, under uncertaininformation and possibly in the presence of communication errors and constraints. The successful completion of thisproject will make a substantial and timely contribution to the National Priority Area of National and Homeland Security(NHS) because of its ramifications in the monitoring, testing, and reliable and secure operation of networked systems,communication networks, and complex digital systems. The development of distributed algorithms for fault diagnosisand the resulting overall enhancement of distributed systems in ways that make them more reliable also contributesto the National Priority Area of Advanced Science and Engineering (ASE). The integration of data models, distributedalgorithms, system dynamics, control and decision making is aligned with the technical focus area of data, models andcommunications (dmc), and the development of critical support mechanisms for reliable operation of complex dynamicsystems and networks is aligned with the technical focus area of integration of computing (int).Intellectual Merit: The intellectual merit of this proposal lies in the synergistic and comprehensive exploration of dif-ferentdimensions within the broad area of detection and identification of faults or, more generally, abnormal behavior incomplex dynamic systems and networks. The ultimate goal is to develop appropriate models and innovative distributedalgorithms that integrate and unify techniques from a number of diverse disciplines, including fault diagnosis in discreteevent systems, detection and estimation, graph theory and optimization, distributed system-level diagnosis, belief propa-gation,model reduction and information theory. Apart from advancing the forefront of the various individual approachesto diagnosis, the overarching theme is the integration of these ideas into a well-defined approach that achieves the ad-vantagesof both deterministic and probabilistic methodologies via scalable models and algorithms. While extending thefrontiers in the broad area of fault diagnosis in complex dynamic systems and networks, this research will at the sametime leverage the applicability of these techniques to the design of test platforms for experimenting with distributed faultdiagnosis in ad-hoc mobile networks and fault localization in indoor sensor networks.Educational Impact and Outreach: The main educational goals of this program are two-fold: (i) To develop coursesand educational materials that discuss systematic approaches for algorithms and architectures for fault diagnosis andtolerance in complex systems and networks. For example, Web-based lectures on special topics of interest will beestablished for practicing engineers in the field; a senior/graduate level course on this topic will be developed; a centralWeb-page will be maintained at the University of Illinois to disseminate new results within the members of the team aswell as to the broader scientific and research community. (ii) To continue to actively recruit and mentor participants fromunderrepresented groups in our respective research programs.1
拟议的研究开发了在有限且可能损坏的信息下监测和诊断动态系统和网络中的故障、危险或更一般的功能变化的理论和技术。我们针对这个问题提出了一种统一的、多方面的方法,将大量的故障诊断研究分解为六个主题:(i)确定性故障诊断,(ii)基于模型的概率诊断,(iii)自适应和顺序诊断,(iv)分布式系统-有线/无线网络中具有通信约束的级诊断,(v)通过分布式置信传播算法的故障诊断,以及(vi)独立于模型的诊断。研究团队将利用其在故障诊断、顺序检测、系统级诊断、分布式控制、建模、分析和性能评估等领域的专业知识,应用概率、图论、置信传播和模型简化来解决检测、识别和定位问题。动态变化环境中的故障​​和异常。除了智力价值之外,所提出的研究计划还将以多种方式产生更广泛的影响。更广泛的影响:网络和网络系统正在日益巩固其作为国家经济和社会基础基石的作用。许多新兴的商业、政府、医疗、军事和安全应用程序都严重依赖于这些系统,因此越来越需要确保这些关键基础设施在恶意或非恶意中断的情况下仍然可靠且值得信赖。使用现成的组件和软件构建值得信赖的网络系统是一个需要克服的重大障碍,以便充分发挥网络系统的潜力。拟议的项目概述了一种可扩展方法的协同和综合方法,用于在不确定信息以及可能存在通信错误和约束的情况下诊断复杂系统和网络中的故障、对抗行为和威胁。该项目的成功完成将为国家和国土安全 (NHS) 的国家优先领域做出实质性和及时的贡献,因为它对网络系统、通信网络和复杂数字系统的监控、测试以及可靠和安全的操作产生影响。系统。用于故障诊断的分布式算法的开发以及由此产生的分布式系统的整体增强,使其更加可靠,也为国家先进科学与工程优先领域(ASE)做出了贡献。数据模型、分布式算法、系统动力学、控制和决策的集成与数据、模型和通信(DMC)的技术重点领域保持一致,复杂动态系统和网络可靠运行的关键支持机制的开发与计算集成的技术重点领域(int)。智力优点:该提案的智力优点在于在故障检测和识别的广泛领域内对不同维度的协同和综合探索,或者更多一般来说,复杂动态系统和网络中的异常行为。最终目标是开发适当的模型和创新的分布式算法,集成和统一来自许多不同学科的技术,包括离散事件系统中的故障诊断、检测和估计、图论和优化、分布式系统级诊断、置信传播、模型简化和信息论。除了推进各种单独诊断方法的前沿之外,总体主题是将这些想法整合到一个明确定义的方法中,通过可扩展的模型和算法实现确定性和概率方法的优点。在扩展复杂动态系统和网络故障诊断广泛领域的前沿的同时,本研究将同时利用这些技术的适用性来设计测试平台,以试验自组织移动网络中的分布式故障诊断和移动网络中的故障定位。室内传感器网络。教育影响和推广:该计划的主要教育目标有两个:(i)开发课程和教育材料,讨论复杂系统和网络中的故障诊断和容错的算法和架构的系统方法。例如,将为该领域的执业工程师开设感兴趣的专题网络讲座;将开发关于该主题的高级/研究生课程;伊利诺伊大学将维护一个中央网页,以便在团队成员以及更广泛的科学研究界传播新成果。 (ii) 继续积极招募和指导来自我们各自研究项目中代表性不足群体的参与者。1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christoforos Hadjicostis其他文献

Christoforos Hadjicostis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christoforos Hadjicostis', 18)}}的其他基金

ITR: Enabling Novel Digital Sequential Circuit Designs through Error Control and Noise Tolerance Techniques
ITR:通过错误控制和噪声容限技术实现新型数字时序电路设计
  • 批准号:
    0218939
  • 财政年份:
    2002
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
EPNES: Collaborative Research: Dynamical Models in Fault-Tolerant Operation and Control of Energy Processing Systems
EPNES:协作研究:能源处理系统容错操作和控制的动态模型
  • 批准号:
    0224729
  • 财政年份:
    2002
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Approach to Fault Tolerance in Discrete-Time Dynamic Systems
职业生涯:离散时间动态系统容错的综合方法
  • 批准号:
    0092696
  • 财政年份:
    2001
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了