NIRT: Laser-Guided Assembly of Nanosystems
NIRT:激光引导纳米系统组装
基本信息
- 批准号:0404030
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The promise of nanotechnology won't be realized unless nanometer-scale structures can be assembled together inexpensively into a working system. The goal of this proposal is to develop and test a revolutionary tool that uses light-pressure forces to rapidly assemble complex nanosystems comprised of structures ranging in size from ~10nm to 1mm. Intellectual Merit: We plan to develop a tool to assemble a nanosystem layer-by-layer using light pressure forces to produce multiple, independent optical traps for organizing simultaneously tens of thousands of nanometer-scale structures within each layer. The optical traps will be produced either by rapidly scanning a laser beam from one trap location to the next, relying on the viscosity of the medium to stabilize the position until the trap is refreshed, or by generating a hologram, where multiple optical traps are created simultaneously by controlling the intensity and phase profile of the beam using a spatial light modulator. Either way, the tool will have to compensate in real-time for the scattering environment of the trap during the layer-by-layer assembly. Therefore, there are two elements at the core of this proposal: 1. the efficient simulation of the dynamic electromagnetic environment of the trap, which is used to predict in real-time the required intensity and phase profiles for the laser; and 2. the concomitant synthesis through adaptive optics of the trap.Broader Impact: Aside from the development of a new tool for nanoscale manufacturing that assembles nanometer-scale objects using light, there is a broader impact of this work derived from the nature of the testbeds we choose to explore, which can only be fabricated through optical manipulation. In particular, we plan to contribute to the understanding of self-assembly and locomotion in living cells through our work on "artificial cytoskeletons," by using optical tweezers to control the assembly of the molecular networks that form the cell's structure. Moreover, our work will affect supra-molecular chemistry in a fundamental way by augmenting the weak noncovalent bonds that form soft-condensed matter systems such as proteins, biological membranes and DNA with "optical binding" forces. By using optical binding forces in conjunction with supra-molecular forces, we hope to gain insight into the structure of the supra-molecular aggregates and their interactions. In addition, significant educational efforts are planned in the form of monthly seminars, innovative new interdisciplinary courses, and extensive involvement of undergraduate students in the research.
除非纳米级结构能够以廉价的方式组装成一个工作系统,否则纳米技术的前景就无法实现。该提案的目标是开发和测试一种革命性的工具,该工具使用轻压力快速组装由尺寸范围从 ~10nm 到 1mm 的结构组成的复杂纳米系统。智力优势:我们计划开发一种工具,利用光压力逐层组装纳米系统,产生多个独立的光陷阱,从而在每层内同时组织数万个纳米级结构。光陷阱可以通过将激光束从一个陷阱位置快速扫描到下一个位置来产生,依靠介质的粘度来稳定位置直到陷阱被刷新,或者通过生成全息图来产生多个光陷阱同时通过使用空间光调制器控制光束的强度和相位分布。无论哪种方式,该工具都必须在逐层组装过程中实时补偿陷阱的散射环境。因此,该提案的核心有两个要素:1. 陷阱动态电磁环境的高效模拟,用于实时预测激光所需的强度和相位分布; 2. 通过陷阱的自适应光学进行伴随合成。 更广泛的影响:除了开发一种利用光组装纳米级物体的纳米级制造新工具之外,这项工作还产生了更广泛的影响,这些影响源于纳米级制造的本质我们选择探索的测试平台只能通过光学操纵来制造。特别是,我们计划通过我们在“人工细胞骨架”方面的工作,通过使用光镊来控制形成细胞结构的分子网络的组装,为理解活细胞中的自组装和运动做出贡献。此外,我们的工作将从根本上影响超分子化学,通过增强弱非共价键,形成软凝聚态物质系统,如具有“光学结合”力的蛋白质、生物膜和DNA。通过将光学结合力与超分子力结合使用,我们希望深入了解超分子聚集体的结构及其相互作用。此外,还计划以每月研讨会、创新的跨学科课程以及本科生广泛参与研究的形式开展重大教育工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Timp其他文献
Observation of the Aharonov-Bohm effect for omega c tau >1.
观察 omega c tau >1 的阿哈罗诺夫-博姆效应。
- DOI:
10.1103/physrevlett.58.2814 - 发表时间:
1987-06-29 - 期刊:
- 影响因子:8.6
- 作者:
Gregory Timp;Albert M. Chang;J. E. Cunningham;T. Y. Chang;P. Mankiewich;Robert Behringer;Richard Howard - 通讯作者:
Richard Howard
Progress toward 10 nm CMOS devices
10 nm CMOS 器件的进展
- DOI:
10.1109/iedm.1998.746433 - 发表时间:
1998-12-06 - 期刊:
- 影响因子:0
- 作者:
Gregory Timp;K. K. Bourdelle;J. E. Bower;F. Baumann;T. Boone;R. Cirelli;K. Evans;J. Garno;A. Ghetti;H. Gossmann;Martin L. Green;D. Jacobson;Y. Kim;Rafael N. Kleiman;F. Klemens;C. Lochstampfor;William M. Mansfield;S. Moccio;David A. Muller;I. E. Ocola;M. I. O'Malley;J. Sapjeta;P. Silverman;T. Sorsch;Donald M. Tennant;W. Timp;B. Weir - 通讯作者:
B. Weir
Low leakage, ultra-thin gate oxides for extremely high performance sub-100 nm nMOSFETs
用于超高性能 100 nm 以下 nMOSFET 的低泄漏、超薄栅极氧化物
- DOI:
10.1109/iedm.1997.650534 - 发表时间:
1997-12-07 - 期刊:
- 影响因子:0
- 作者:
Gregory Timp;A. Agarwal;F. Baumann;T. Boone;M. Buonanno;R. Cirelli;V. Donnelly;Majeed A. Foad;D. Grant;Martin L. Green;H. Gossmann;S. Hillenius;J. Jackson;D. Jacobson;Rafael N. Kleiman;F. Klemens;J.T.;W. Mansfield;S. Moccio;A. Murrell;M. O'Malley;J. Rosamilia;J. Sapjeta;P. Silverman;T. Sorsch;W. W. Tai;Donald M. Tennant;H. Vuong;B. Weir - 通讯作者:
B. Weir
Laser-guided assembly of heterotypic three-dimensional living cell microarrays.
异型三维活细胞微阵列的激光引导组装。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.4
- 作者:
G. M. Akselrod;W. Timp;U. Mirsaidov;Qian Zhao;Chun Li;R. Timp;K. Timp;Paul Matsudaira;Gregory Timp - 通讯作者:
Gregory Timp
The ballistic nano-transistor
弹道纳米晶体管
- DOI:
10.1109/iedm.1999.823845 - 发表时间:
1999-12-05 - 期刊:
- 影响因子:0
- 作者:
Gregory Timp;J. Bude;K. K. Bourdelle;J. Garno;A. Ghetti;H. Gossmann;Martin L. Green;G. Forsyth;Y. Kim;Rafael N. Kleiman;F. Klemens;A. Kornblit;C. Lochstampfor;W. Mansfield;S. Moccio;T. Sorsch;Donald M. Tennant;W. Timp;R. Tung - 通讯作者:
R. Tung
Gregory Timp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Timp', 18)}}的其他基金
IDBR: Using a Nanopore to Transfect Cells with Single Molecule Precision to Induce Pluripotency Efficiently in Fibroblasts
IDBR:使用纳米孔以单分子精度转染细胞,有效诱导成纤维细胞的多能性
- 批准号:
1256052 - 财政年份:2013
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
EMT/BSSE Synthetic Biological Integrated Circuits for Computing
EMT/BSSE 计算用合成生物集成电路
- 批准号:
1129098 - 财政年份:2010
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EMT/BSSE Synthetic Biological Integrated Circuits for Computing
EMT/BSSE 计算用合成生物集成电路
- 批准号:
0829900 - 财政年份:2008
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
相似国自然基金
激光/超声双引导磁调控微纳机器人联合低强度超声靶向增强溶栓药物渗透研究
- 批准号:82302215
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光强智能匹配与视觉感知决策辅助的激光引导多无人机协同导航方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多光谱的飞秒激光引导高压放电SF6分解机理及绝缘故障诊断研究
- 批准号:62175208
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
磁共振引导下激光间质热疗治疗脑胶质瘤的有效性和安全性评价研究
- 批准号:82151310
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:原创探索计划项目
磁共振筛查联合共聚焦激光显微内镜引导光动力精准治疗胰腺原位癌实验研究
- 批准号:81871324
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Non-Invasive Functional Assessments for Translational Retinal Therapeutics
视网膜转化治疗的非侵入性功能评估
- 批准号:
10654125 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Endoscopic Ultrasound-guided In Vivo Confocal Laser Endomicroscopy as an Imaging Biomarker for the Accurate Risk Stratification of Intraductal Papillary Mucinous Neoplasms
内镜超声引导体内共聚焦激光内镜作为成像生物标志物,用于导管内乳头状粘液性肿瘤的准确风险分层
- 批准号:
10638754 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Assistive Robotically Aligning Optical Coherence Tomography and Laser Photocoagulation Therapy of the Retinal Periphery
辅助机器人对准视网膜周边光学相干断层扫描和激光光凝治疗
- 批准号:
10590252 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
SBIR Phase II: Development of a computer-guided, orthopedic laser surgical system
SBIR 第二阶段:开发计算机引导的骨科激光手术系统
- 批准号:
2154373 - 财政年份:2022
- 资助金额:
$ 130万 - 项目类别:
Cooperative Agreement
Transvenous Optoacoustic-Ultrasound Guided Cold Laser Wire for Crossing Coronary Chronic Total Occlusion
经静脉光声超声引导冷激光线穿越冠状动脉慢性完全闭塞
- 批准号:
10612422 - 财政年份:2022
- 资助金额:
$ 130万 - 项目类别: