ITR: Bayesian Modeling for Biosurveillance

ITR:生物监测贝叶斯建模

基本信息

  • 批准号:
    0325581
  • 负责人:
  • 金额:
    $ 351.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Early, reliable detection of outbreaks of disease, whether natural (e.g., West Nile virus) or bioterrorist-induced (e.g., anthrax and smallpox), is a critical problem today. It is important to detect outbreaks early in order to provide the best possible medical response and treatment, as well as to improve the chances of identifying the source. A primary goal of this project is to develop basic new Bayesian probabilistic inference algorithms that monitor electronically available healthcare data to achieve early, reliable detection of outbreaks. In particular, inference will take place on Bayesian networks that model the links between available data and possible causes of outbreaks. The scientific challenge of monitoring for outbreaks within an entire population create major computational challenges in building and applying Bayesian models that are orders of magnitude larger than those developed previously. The project will apply and extend state-of-the-art probabilistic inference methods to achieve efficient inference. If inference indicates that an outbreak is likely, an alert will be raised automatically. Appropriately, however, public health officials are unlikely to blindly trust an outbreak alert, unless there is an explanatory justification. Automated explanation of Bayesian inference is therefore another key project goal. The scientific contributions of this project will follow from developing, investigating, and evaluating new modeling and algorithmic techniques that make Bayesian biosurveillance practical for monitoring and diagnosing (in real time) the disease-outbreak status of an entire population. In investigating these issues, this project is anticipated to make both specific scientific contributions to computer science, statistics, and public health, as well as broader contributions to public safety.
如今,早期,可靠的疾病暴发(例如,西尼罗河病毒)还是生物疗法诱导的(例如炭疽和天花)是一个关键问题。重要的是要尽早检测疫情,以提供最佳的医疗反应和治疗,并提高识别来源的机会。该项目的主要目标是开发基本的新贝叶斯概率推理算法,以监控电子可用的医疗保健数据,以实现对暴发的早期可靠检测。特别是,推理将在贝叶斯网络上进行,该网络对可用数据和可能的爆发原因之间的链接进行建模。 监测整个人群中暴发的科学挑战在建立和应用比以前开发的模型大的贝叶斯模型方面引起了重大的计算挑战。该项目将应用并扩展最新的概率推理方法,以实现有效的推理。如果推论表明可能发生爆发,则将自动提高警报。但是,适当地,除非有解释性理由,否则公共卫生官员不太可能盲目信任爆发警报。因此,贝叶斯推论的自动解释是另一个关键项目目标。该项目的科学贡献将遵循开发,研究和评估新的建模和算法技术,这些技术使贝叶斯生物监视剂可实用,可(实时监测和诊断)整个人群的疾病爆发状态。在调查这些问题时,预计该项目将对计算机科学,统计和公共卫生做出具体的科学贡献,以及对公共安全的更广泛贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Cooper其他文献

Thialfi: a client notification service for internet-scale applications
Thialfi:适用于互联网规模应用程序的客户端通知服务
Trends in occupational lead exposure since the 1978 OSHA lead standard.
自 1978 年 OSHA 铅标准出台以来职业铅暴露的趋势。
Correspondence on: Methodological Standards When Reporting From National Databases.
通讯:从国家数据库报告时的方法标准。
  • DOI:
    10.1093/ibd/izae072
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Khadija Naseem;A. Sohail;Vu Nguyen;Ahmad Khan;Gregory Cooper;B. Lashner;Jeffry Katz;Fabio Cominelli;Miguel Regueiro;Emad Mansoor
  • 通讯作者:
    Emad Mansoor
S394 Risk of Colorectal Cancer in Incarcerated Patients With Inflammatory Bowel Disease in the United States: A Population-Based Study
S394 美国被监禁的炎症性肠病患者患结直肠癌的风险:一项基于人群的研究
  • DOI:
    10.14309/01.ajg.0000951216.28503.1d
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Temitope Olasehinde;Jaime A. Perez;V. Chittajallu;J. Katz;Emad Mansoor;Gregory Cooper
  • 通讯作者:
    Gregory Cooper

Gregory Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Cooper', 18)}}的其他基金

BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636786
  • 财政年份:
    2017
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Standard Grant
Causal Discovery from a Mixture of Experimental and Observational Data
从实验和观察数据的混合中发现因果关系
  • 批准号:
    9812021
  • 财政年份:
    1998
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Continuing Grant
Learning Bayesian Networks that Contain Both Discrete and Continuous Variables
学习包含离散变量和连续变量的贝叶斯网络
  • 批准号:
    9509792
  • 财政年份:
    1995
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Continuing Grant
Improving the Cost Effectiveness of Health Care Through Machine Learning Applied to Large Clinical Databases
通过应用于大型临床数据库的机器学习提高医疗保健的成本效益
  • 批准号:
    9315428
  • 财政年份:
    1994
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Continuing Grant
Learning Probabilistic Networks from Databases
从数据库学习概率网络
  • 批准号:
    9111590
  • 财政年份:
    1991
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于变分推断法的航空电磁数据三维贝叶斯反演研究
  • 批准号:
    42304149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
  • 批准号:
    22308228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
贝叶斯框架下基于采样算法的弹性介质全波形反演与不确定性分析
  • 批准号:
    42374138
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
矿山受限空间台网震源贝叶斯不确定度定位及其分维演化规律研究
  • 批准号:
    52304123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
贝叶斯视角下视觉分类器的鲁棒泛化性研究
  • 批准号:
    62302139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 351.88万
  • 项目类别:
    Continuing Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 351.88万
  • 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 351.88万
  • 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
  • 批准号:
    10734008
  • 财政年份:
    2023
  • 资助金额:
    $ 351.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了