Theoretical and Numerical Investigations of the Earth's Midlatitude Tropopause
地球中纬度对流层顶的理论和数值研究
基本信息
- 批准号:0230903
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-03-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will investigate the dynamical mechanisms maintaining tropopause height and its permeability in the extratropical latitudes. Understanding the formation, maintenance, and kinematics of the midlatitude tropopause remains a core, challenging problem in dynamic meteorology. Recent interest in its dynamic permeability stems from its considerable impact on transport of chemical constituents, including ozone and water vapor, between the troposphere and stratosphere. Dr. Nakamura (U of Chicago) will investigate the problem both theoretically and numerically. Numerical calculations with quasi-geostrophic and general circulation models will expand the theoretical analysis of the advection-diffusion equation to more realistic scenarios, including one involving penetration of the tropopause by the eddy potential vorticity fluxes. The project will advance theoretical understanding of the dynamical interaction of the troposphere and stratosphere, and should provide separate estimates of the stratosphere-to-troposphere, and troposphere-to-stratosphere mass transfers, which will improve modeling and prediction of cross-tropopause transports of trace gases and substances.
该项目将研究维持对流层顶高度及其在温带纬度地区渗透性的动力机制。了解中纬度对流层顶的形成、维持和运动学仍然是动态气象学中具有挑战性的核心问题。最近对其动态渗透性的兴趣源于其对对流层和平流层之间化学成分(包括臭氧和水蒸气)传输的巨大影响。 Nakamura 博士(芝加哥大学)将从理论上和数值上研究这个问题。准地转和大气环流模型的数值计算将把平流扩散方程的理论分析扩展到更现实的场景,包括涉及涡位涡通量穿透对流层顶的场景。该项目将增进对对流层和平流层动力学相互作用的理论理解,并应提供平流层到对流层以及对流层到平流层质量传递的单独估计,这将改进跨对流层顶传输的建模和预测。微量气体和物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noboru Nakamura其他文献
Fire Retardancy of Fire-retardant-impregnated Wood after Natural Weathering II.
自然风化后阻燃剂浸渍木材的阻燃性能 II.
- DOI:
10.2488/jwrs.66.31 - 发表时间:
2020-01-25 - 期刊:
- 影响因子:0.3
- 作者:
Masayuki Kawarasaki;Ryoichi Hiradate;Y. Hirabayashi;S. Kikuchi;Y. Ohmiya;Jaeyoung Lee;Masaki Noaki;Noboru Nakamura - 通讯作者:
Noboru Nakamura
GEOMETRIC MEANS OF POSITIVE OPERATORS II
正算子的几何均值 II
- DOI:
10.32219/isms.69.1_35 - 发表时间:
2009 - 期刊:
- 影响因子:1
- 作者:
Saichi Izumino;Noboru Nakamura - 通讯作者:
Noboru Nakamura
GEOMETRIC OPERATOR MEAN INDUCED FROM THE RICCATI EQUATION
由Riccati方程推导的几何算子平均值
- DOI:
- 发表时间:
2007-07-01 - 期刊:
- 影响因子:0
- 作者:
Noboru Nakamura - 通讯作者:
Noboru Nakamura
Possible transportation of tick-borne viruses by migratory birds.
候鸟可能传播蜱传病毒。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hiroshi Shimoda;Shohei Minami;Ai Takano;Shiori Aoki;Junko Mizuno;Kango Tatemoto;Kenzo Yonemitsu;Yono Supri;Tran Thuy Bao Ngo;Ryusei Kuwata;Katsuyoshi Umada;Noboru Nakamura;Tomohiro Deguchi;Ken Maeda - 通讯作者:
Ken Maeda
Elementary proofs of operator monotonicity of certain functions (Operator monotone functions and related topics)
某些函数的算子单调性的基本证明(算子单调函数及相关主题)
- DOI:
10.1186/s13660-018-1616-z - 发表时间:
2014-05-01 - 期刊:
- 影响因子:1.6
- 作者:
Saichi Izumino;Noboru Nakamura - 通讯作者:
Noboru Nakamura
Noboru Nakamura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noboru Nakamura', 18)}}的其他基金
Rossbypalooza 2024: A Student-led Summer School on Climate and Extreme Events Conference; Chicago, Illinois; July 22-August 2, 2024
Rossbypalooza 2024:学生主导的气候和极端事件暑期学校会议;
- 批准号:
2406927 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quantifying Sources and Sinks of Rossby Wave Activity in the Atmosphere
量化大气中罗斯贝波活动的源和汇
- 批准号:
2154523 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Rossbypalooza 2018: A Student-led Workshop on Understanding Climate through Simple Models; Chicago, Illinois; June 11-23, 2018
Rossbypalooza 2018:由学生主导的通过简单模型了解气候的研讨会;
- 批准号:
1810964 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
"Rossbypalooza", A Student-led Workshop at the Interface of Climate Dynamics and Statistics; Chicago, Illinois; July 25-29, 2016
“Rossbypalooza”,由学生主导的气候动力学与统计接口研讨会;
- 批准号:
1603336 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Wave Activity Budget and the Variabilities of the Extratropical Climate
波浪活动预算和温带气候的变化
- 批准号:
1563307 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Finite-amplitude Eddy-mean Flow Interaction in the Extratropical Atmosphere
温带大气中的有限振幅涡均流相互作用
- 批准号:
1151790 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Teaching Weather and Climate Using Laboratory Experiments; Chicago, IL; Summer 2008
利用实验室实验进行天气和气候教学讲习班;
- 批准号:
0744095 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Annual and Interannual Variabilities in the Kinematics and Dynamics of the Polar Stratosphere
极地平流层运动学和动力学的年度和年际变化
- 批准号:
9980676 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
含氧挥发性有机物垂直分布及其对臭氧污染影响的数值模拟研究
- 批准号:42307130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑应力扰动的汶川-茂县断层地震循环数值模拟研究
- 批准号:42304057
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高超音速环境下强激光与碳纤维复合材料耦合动力学数值模拟研究
- 批准号:12304346
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孔隙弹性介质中半变分不等式问题及其高效数值解耦方法
- 批准号:12371407
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
MoST-DFG Collaboration - Theoretical, numerical and experimental investigations of gravity-driven fluid-granular mixture flows
MoST-DFG 合作 - 重力驱动的流体-颗粒混合物流动的理论、数值和实验研究
- 批准号:
425259073 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
RUI: Theoretical (Numerical) Investigations of Novel Quantum Phases and Transitions in Strongly Interacting Systems
RUI:强相互作用系统中新型量子相和跃迁的理论(数值)研究
- 批准号:
1408560 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
RUI: Theoretical (Numerical) Investigations of Novel Quantum Phases and Transitions in Strongly Interacting Systems
RUI:强相互作用系统中新型量子相和跃迁的理论(数值)研究
- 批准号:
0906816 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Investigations in Theoretical and Numerical Relativity
理论和数值相对论的研究
- 批准号:
0758116 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Theoretical and numerical investigations on the dynamics of gaseous detonation waves
气体爆震波动力学的理论和数值研究
- 批准号:
314327-2005 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships