ITR: Language, Learning, and Modeling Biological Sequences
ITR:语言、学习和生物序列建模
基本信息
- 批准号:0205456
- 负责人:
- 金额:$ 349.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EIA-0205456Joshi. Aravind KUniversity of PennsylvaniaITR: Language, Learning, and Modeling Biological SequencesRecent significant advances in natural language processing such as the integration of grammatical and probabilistic machine-learning techniques have not been exploited for modeling biological sequences. These new techniques are highly relevant to the biological domain because they support the integration of sequence features at several scales, from dependencies between successive items through dependencies involving complex structures to overall sequence statistics. Hence, the major goals to be pursued are: (1) Development of new techniques for integrating grammatical and probabilistic information, in particular, integration and evaluation of grammatical, probabilistic, and approximate counting methods for fold prediction in secondary and tertiary structures of biomolecules. (2) Development and evaluation of probabilistic exponential models for gene finding, in particular genes for apicoplast-targeted proteins in eukaryotic human pathogens of the phylum `Apicomplexa'. This research is highly interdisciplinary, involving the disciplines of computer science, biology and linguistics. It will have a significant impact on the modeling of biological sequences. It will also provide a wonderful opportunity to train new researchers to carry out this interdisciplinary research, thus contributing to science and mathematical education and human resource development. The proposed research arose out of many discussions that took place at a landmark workshop on `Language Modeling of Biological Data' held at the University of Pennsylvania in February 2001.
EIA-0205456乔希。 Aravind K 宾夕法尼亚大学ITR:语言、学习和生物序列建模最近自然语言处理方面的重大进展(例如语法和概率机器学习技术的集成)尚未用于生物序列建模。这些新技术与生物领域高度相关,因为它们支持多个尺度上序列特征的整合,从连续项之间的依赖关系到涉及复杂结构的依赖关系,再到整体序列统计。因此,要追求的主要目标是:(1)开发整合语法和概率信息的新技术,特别是整合和评估用于生物分子二级和三级结构折叠预测的语法、概率和近似计数方法。 (2) 开发和评估用于基因发现的概率指数模型,特别是“顶端复合体”门真核人类病原体中顶端质体靶向蛋白质的基因。这项研究具有高度跨学科性,涉及计算机科学、生物学和语言学等学科。它将对生物序列的建模产生重大影响。它还将为培训新研究人员进行跨学科研究提供绝佳的机会,从而为科学和数学教育以及人力资源开发做出贡献。这项拟议的研究源于 2001 年 2 月在宾夕法尼亚大学举办的一次具有里程碑意义的“生物数据语言建模”研讨会上进行的多次讨论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aravind Joshi其他文献
Cogniac: a discourse processing engine
Cogniac:话语处理引擎
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
F. B. Baldwin;Aravind Joshi - 通讯作者:
Aravind Joshi
Quantum Circuit Optimization of Arithmetic circuits using ZX Calculus
使用 ZX 微积分对算术电路进行量子电路优化
- DOI:
10.48550/arxiv.2306.02264 - 发表时间:
2023-06-04 - 期刊:
- 影响因子:0
- 作者:
Aravind Joshi;Akshara Kairali;Renju Raju;A. Athreya;R. Monica;Sanjay Vishwakarma;Srinjoy Ganguly - 通讯作者:
Srinjoy Ganguly
Intention, Interpretation and the Computational Structure of Language
语言的意图、解释和计算结构
- DOI:
- 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Matthew Stone;Justine Cassell;Aravind Joshi;Mark Steedman;Vasil Daskalopoulos;David DeVault;Raymond - 通讯作者:
Raymond
Aravind Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aravind Joshi', 18)}}的其他基金
CI: ADDO-EN: Significant Enhancement of the Exisitng Penn Discourse Treebank
CI:ADDO-EN:现有宾夕法尼亚大学话语树库的显着增强
- 批准号:
1059353 - 财政年份:2011
- 资助金额:
$ 349.98万 - 项目类别:
Standard Grant
RI: Exploiting and Exploring Discourse Connectivity: Deriving New Technology and Knowledge from the Penn Discourse Treebank
RI:利用和探索话语连通性:从宾夕法尼亚大学话语树库中获取新技术和知识
- 批准号:
0705671 - 财政年份:2007
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
Metagrammatical Knowledge for Grammars and Corpora
语法和语料库的元语法知识
- 批准号:
0414409 - 财政年份:2004
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
CISE Research Resources: Discourse Penn Treebank and Multimodal FORM: Development of Two Richly Annotated Corpora
CISE 研究资源:Discourse Penn Treebank 和 Multimodal FORM:两个注释丰富的语料库的开发
- 批准号:
0224417 - 财政年份:2002
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
ITR: Mining the Bibliome -- Information Extraction from the Biomedical Literature
ITR:挖掘文献库——从生物医学文献中提取信息
- 批准号:
0205448 - 财政年份:2002
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
Constructing Science: Materials and Activities for Kindergarten and First-Grade
构建科学:幼儿园和一年级的材料和活动
- 批准号:
9252885 - 财政年份:1992
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
Research in Natural Language Processing: Mathematical and Computational Investigations in Constrained Grammatical Formalisms
自然语言处理研究:受限语法形式主义的数学和计算研究
- 批准号:
9016592 - 财政年份:1991
- 资助金额:
$ 349.98万 - 项目类别:
Continuing grant
Center for Research in Cognitive Science
认知科学研究中心
- 批准号:
8920230 - 财政年份:1991
- 资助金额:
$ 349.98万 - 项目类别:
Cooperative Agreement
Natural Language Processing (Computer Research)
自然语言处理(计算机研究)
- 批准号:
8410413 - 财政年份:1984
- 资助金额:
$ 349.98万 - 项目类别:
Continuing grant
Modelling Interactive Processes: Flexible Communication With Knowledge Bases
交互过程建模:与知识库的灵活通信
- 批准号:
8219196 - 财政年份:1983
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
相似国自然基金
少监督下的跨层次语言结构建模及表征学习研究
- 批准号:62306216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于大规模语言模型的工具学习方法
- 批准号:62306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自然语言处理和反绎学习的航运信用评估模型研究
- 批准号:62372077
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
因果机制引导的自然语言处理深度学习建模研究
- 批准号:62336006
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
基于自然语言分析的在线学习社区认知参与评测与干预研究
- 批准号:62307010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 349.98万 - 项目类别:
Research Grant
CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
- 批准号:
2338833 - 财政年份:2024
- 资助金额:
$ 349.98万 - 项目类别:
Continuing Grant
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 349.98万 - 项目类别:
Cooperative Agreement
Identifying the role of sensorimotor feedback as a mechanism for language learning in the first three years of life
确定感觉运动反馈作为生命前三年语言学习机制的作用
- 批准号:
EP/X042405/1 - 财政年份:2024
- 资助金额:
$ 349.98万 - 项目类别:
Research Grant
Language learning, communication and the emergence of phonotactic constraints
语言学习、交流和语音限制的出现
- 批准号:
ES/X014312/1 - 财政年份:2024
- 资助金额:
$ 349.98万 - 项目类别:
Research Grant