Sharp Inequalities for Sums and Functions of Dependent Variables
因变量的和与函数的尖锐不等式
基本信息
- 批准号:0205791
- 负责人:
- 金额:$ 26.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0205791de la Pena In this project the Principal Investigator (PI) introduces three related problem areas of key importance in the study of the probabilistic and statistical properties of sums and functions of independent and dependent random variables. In particular, the PI proposes to develop sharp inequalities for the moments of self-normalized processes, as well as for sums of multilinear forms and U-statistics (unbiased statistics) in independent and dependent variables. In addition, the PI intends to further develop a novel approach to approximating the expected time it takes a process (with a general dependence structure) to hit a given boundary. The interest in the study of self-normalized processes stems from their use as key quantities in the development of non-parametric estimators, as well as for their use as pivotal quantities for the creation of confidence intervals and tests of hypothesis. For example, the t-statistic is a self-normalized and unit-less estimator commonly used in the testing of hypotheses about the mean of a distribution with unknown variance. The interest on sharp results for self-normalized estimators is based in part in the need for approximating p-values and the power of tests in situations when the assumptions on the variables need to be relaxed (e.g. independence, normality and/or identical distribution). The study of results related to sums of multilinear forms and U-statistics is related to their use as building blocks in the development of certain stochastic integrals, as well as for their use as the typical unbiased estimators in statistics. Moreover, sums of multilinear forms in independent random variables are frequently used in approximating non-linear estimators of moving averages, which are of fundamental importance in econometric studies. The proposed work concerning the development of new and improved tools (under relaxed assumptions) for the study of statistical estimators is important for the assessment of hypotheses with direct implications in medical and social sciences as well as engineering through its connection to the comparison of competing treatments and technologies under a wider set of scenarios than is currently possible. The study on how long it takes for a random process to hit a boundary, on the basis of historical evidence, has potential important implications in the physical sciences and economics including in the study of how long it will take for 1) a tornado to hit a city, 2) a person to develop cancer, 3) an earthquake to occur or 4) the stock market to crash
0205791de la pena在该项目中,主要研究者(PI)在研究独立和依赖随机变量的总和和功能的概率和统计特性的研究中介绍了三个相关的问题领域。特别是,PI提议在自立过程中以及独立变量和因变量中的多线性形式和U统计数据(无偏见的统计)的总和中产生急剧的不平等现象。此外,PI打算进一步开发一种新的方法来近似于击中给定边界的过程(具有一般依赖性结构)的预期时间(具有一般依赖性结构)。对自称过程的研究的兴趣源于它们用作非参数估计量开发的关键数量,以及它们用作创建置信区间和假设检验的关键量的使用。例如,T统计是一种自我归一化的,无单位的估计量,通常用于测试有关具有未知方差的分布平均值的假设。自称估计器对尖锐结果的兴趣部分基于近似p值的需求以及在需要放松变量的假设时(例如独立性,正态性和/或相同的分布),在情况下的测试功能。与多线性形式和U统计数据总和相关的结果的研究与它们用作某些随机积分开发的基础以及它们用作统计数据中典型的无偏估计量有关。此外,独立随机变量中多线性形式的总和经常用于近似移动平均值的非线性估计量,这在计量经济学研究中至关重要。 关于开发新工具(在放松的假设下)进行统计估计器研究的拟议工作对于评估在医学和社会科学中具有直接影响的假设以及通过比较竞争性治疗和技术在更广泛的风景中的比较而进行工程的假设很重要。在历史证据的基础上,关于一个随机过程需要多长时间撞击边界需要多长时间的研究对物理科学和经济学具有潜在的重要含义,包括在研究中需要多长时间造成城市的龙卷风,2)一个人发展癌症,3)地震发生或4)股票市场崩溃或4)崩溃或4)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor de la Pena其他文献
Victor de la Pena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor de la Pena', 18)}}的其他基金
Northeast Probability Seminar 2006
2006年东北概率研讨会
- 批准号:
0632203 - 财政年份:2006
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Topics in Risk: Self-Normalization, Copulas , Boundary Crossing and Applications
风险主题:自我规范化、Copulas、边界跨越和应用
- 批准号:
0505949 - 财政年份:2005
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Processes With Dependent Increments: Boundary Crossing, Self-Normalization and Limit Theorems
具有相关增量的过程:边界跨越、自归一化和极限定理
- 批准号:
9972237 - 财政年份:1999
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Lp and Tail Probability Approximations for Sums of Dependent Variables
数学科学:因变量和的 Lp 和尾部概率近似
- 批准号:
9626175 - 财政年份:1996
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Tail Probability Approximations for Sums of Dependent Variables
数学科学:因变量之和的尾部概率近似
- 批准号:
9310682 - 财政年份:1993
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Inequalities for Adapted Processes
数学科学:适应过程的不等式
- 批准号:
9108006 - 财政年份:1991
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
相似国自然基金
碳中和目标下中国居民群体不平等影响研究—基于微观模拟和CGE模型双向耦合
- 批准号:72373163
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
共同富裕目标下旅游发展对农村居民经济福利的影响研究:基于收入增长和不平等纾解视角
- 批准号:72302169
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
我国老年人医疗服务利用机会不平等研究:测度、成因及对策
- 批准号:72374021
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
经济不平等的经济与治理认知塑造机制与行为政策引导策略研究
- 批准号:72374116
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
代内分化与代际固化:收入和财富不平等的机制与效应
- 批准号:72373167
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Exact inequalities and limit theorems for Rademacher and self-normalized sums, and related statistics
Rademacher 和自归一化和的精确不等式和极限定理以及相关统计
- 批准号:
0805946 - 财政年份:2008
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS
Banach空间结构理论及范数不等式研究及其应用
- 批准号:
15540179 - 财政年份:2003
- 资助金额:
$ 26.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON NORM INEQUALITIES IN BANACH SPACES AND ITS APPLICATIONS
Banach空间中的范数不等式及其应用研究
- 批准号:
13640188 - 财政年份:2001
- 资助金额:
$ 26.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polynomials and Exponential Sums: Extremal Problems, Density, Inequalities, and Zeros
多项式和指数和:极值问题、密度、不等式和零点
- 批准号:
0070826 - 财政年份:2000
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Convergence Problems and Integral Inequalities
收敛问题和积分不等式
- 批准号:
07640241 - 财政年份:1995
- 资助金额:
$ 26.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)