CAREER: Approximation Algorithms for Geometric Computing

职业:几何计算的近似算法

基本信息

项目摘要

0132901Har-Peled, SarielU of Ill, Urbana-ChampaignComputational geometry is the branch of theoretical computer science devoted to the design,analysis, and implementation of geometric algorithms and data structures. Computationalgeometry has deep roots in reality: Geometric problems arise naturally in any computa-tional field that simulates or interacts with the physical world|computer graphics, robotics,geographic information systems, computer aided-design, and molecular modeling, to namea few|as well as in more abstract domains such as combinatorial geometry and algebraictopology. Aside from their obvious practical significance, geometric algorithms and datastructures enjoy a rich and satisfying mathematical structure, and their development oftenrequires tools from mathematical disciplines such as combinatorics, topology, and algebraicgeometry, as well as traditional computational tools.The proposal outlines a challenging career development plan focusing on research in abroad cross-section of computational geometry, building on and significantly broadening thePI's successful work in the field over the last several years. Specific problem areas in whichthe PI plans to work include approximation algorithms, kinetic data structures, spatial andtemporal databases, external memory computation, geometric optimization, and clustering.This classification is at best a rough guide, as many interesting geometric problems fallinto more than one category. Furthermore, the PI plans to continue combining theory andempirical experimentation in his work, putting an emphasize on algorithms that performwell in practice.
0132901Har-Peled, Sariel伊利诺伊大学厄巴纳-香槟分校计算几何是理论计算机科学的一个分支,致力于几何算法和数据结构的设计、分析和实现。计算几何在现实中有很深的根源:几何问题自然出现在任何模拟物理世界或与物理世界交互的计算领域|计算机图形学、机器人技术、地理信息系统、计算机辅助设计和分子建模等等|以及例如组合几何和代数拓扑学等更抽象的领域。除了明显的实际意义外,几何算法和数据结构还拥有丰富且令人满意的数学结构,其发展往往需要组合数学、拓扑学、代数几何等数学学科的工具以及传统的计算工具。该提案概述了具有挑战性的职业发展该计划重点关注国外计算几何领域的研究,以 PI 过去几年在该领域的成功工作为基础并显着扩展。 PI 计划工作的具体问题领域包括近似算法、动力学数据结构、空间和时间数据库、外部存储器计算、几何优化和聚类。这种分类充其量只是一个粗略的指导,因为许多有趣的几何问题属于多个类别。此外,PI 计划在他的工作中继续将理论和实证实验结合起来,重点关注在实践中表现良好的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sariel Har-Peled其他文献

Sariel Har-Peled的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sariel Har-Peled', 18)}}的其他基金

NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
  • 批准号:
    2317241
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
AF: Small: Towards Sturdier Geometric Algorithms
AF:小:迈向更坚固的几何算法
  • 批准号:
    1907400
  • 财政年份:
    2019
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
AF: Small: Towards better geometric algorithms: Summarizing, partitioning and shrinking data
AF:小:迈向更好的几何算法:汇总、分区和缩小数据
  • 批准号:
    1421231
  • 财政年份:
    2014
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
AF: Small: Efficient Proximity and Similarity Search in Computational Geometry
AF:小:计算几何中的高效邻近性和相似性搜索
  • 批准号:
    1217462
  • 财政年份:
    2012
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
AF: Small: Approximation, Covering and Clustering in Computational Geometry
AF:小:计算几何中的近似、覆盖和聚类
  • 批准号:
    0915984
  • 财政年份:
    2009
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似国自然基金

非对称旅行商相关问题的近似算法研究
  • 批准号:
    12301414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
整数格上流次模最大化近似算法研究
  • 批准号:
    12301417
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
  • 批准号:
    12361065
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
车辆路径规划及其相关问题的近似算法研究
  • 批准号:
    62372095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
正则次模最大化问题的近似算法研究
  • 批准号:
    12301419
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Optimal Approximation Algorithms in High Dimensions
职业:高维最优逼近算法
  • 批准号:
    1848508
  • 财政年份:
    2019
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
  • 批准号:
    1750127
  • 财政年份:
    2018
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning
职业:超越最坏情况分析:近似算法和机器学习的新方法
  • 批准号:
    1652491
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
CAREER: Approximation Algorithms via SDP hierarchies
职业:通过 SDP 层次结构的近似算法
  • 批准号:
    1651861
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
CAREER: Pursuing New Tools for Approximation Algorithms
职业:追求近似算法的新工具
  • 批准号:
    1552097
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了