Spin Polarized Tunneling Studies in Transition Metals, Alloys and Heavy Fermions

过渡金属、合金和重费米子的自旋极化隧道研究

基本信息

  • 批准号:
    0137632
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-01-01 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

This project will explore electron spin properties, from both the fundamental physics point of view and from the viewpoint of the technologically important area of spintronics. The emphasis will be on surfaces and interfaces that form the basis of spin transport phenomena. The intention is also to extend the technique of spin-polarized tunneling into new areas: (1) Determination of its relation to crystalline direction, barrier interface, and bulk magnetic moment, (2) Analytical study of tunnel barriers. Though having been addressed for nearly thirty years by many theoretical approaches, the origin and the magnitude of the polarization values measured by tunneling remain an open question. This work will investigate the poorly understood relation between spin polarization of tunneling electrons on crystallographic orientation and surface band structure. This includes spin-polarized tunneling from epitaxial ferromagnetic films, interfacial-bonding effects and tunnel barrier properties. Fabrication techniques will manipulate the interfaces and barriers in planar thin film magnetic tunnel junctions in efforts to maximize the spin polarization values. Spin tunneling is influenced by delta dopants (with or without magnetic moment) in the tunnel barriers - mostly flipping the spins and, except for the case of Fe dopants, even enhancing the spin tunneling probability. This area is yet to be understood and will be well investigated. A state of the art MBE system makes it feasible to engineer thin films with new types of interface materials leading to unique electronic and magnetic properties. The theoretical support comes from Prof. William H. Butler of Oak Ridge National Lab whose expertise is in band structure calculations, interface effects as well as ferromagnetic tunnel junction structures. Spin tunneling studies will possibly be initiated, a first of its kind study in heavy Fermion systems, wherein temperature-induced changes and pressure-induced changes of the magnetic transitions occur. Students of all levels and postdocs will be involved in this investigation thus creating a pool of technical experts particularly in the future field of information technology - spintronics, and in general magnetism as well as thin film science.This condensed matter physics project broaden our fundamental understanding of electron spin properties (a topic in magnetism) by using the unique tool of spin polarized tunneling technique (a quantum phenomenon). The results will contribute to the knowledge base needed for possible future spin-based information technologies. The project will build on earlier successful work in spin tunneling plus transport, and at a later stage of the program will push toward the new frontiers by examining a new class of magnetic materials, so-called heavy Fermion metals. A major goals is to expand a new and promising interaction between theorists who are now working to analyze the spin tunneling experiments. In addition, the fabrication methods, using state of the art molecular beam epitaxy tools will manipulate the material interfaces and tunnel barriers to create novel materials and to maximize the spin polarization values. Measurements will be made in ambient as well as liquid helium temperatures in the presence of a small or large magnetic field. Some of the earlier results of this project have generated worldwide interest, both experimentally and theoretically, with many major companies involved in developing nonvolatile memory elements as well as sensors for ultrahigh-density recording. The project integrates research with the education and training of high-school students, undergraduate students, graduate students and post-doctoral fellows. The training will be in spin transport and in specialized areas such as nanotechnology. The highly educated and trained people will be well prepared for careers as educators and workers in the area of spin-based information storage technology.
该项目将从基础物理学的角度和自旋电子学技术重要领域的角度探索电子自旋特性。 重点将放在构成自旋输运现象基础的表面和界面上。 其目的还在于将自旋极化隧道技术扩展到新领域:(1)确定其与晶体方向、势垒界面和体磁矩的关系,(2)隧道势垒的分析研究。 尽管许多理论方法已经解决了近三十年的问题,但通过隧道效应测量的偏振值的起源和大小仍然是一个悬而未决的问题。 这项工作将研究隧道电子的自旋极化对晶体取向和表面能带结构之间的关系知之甚少。 这包括外延铁磁薄膜的自旋极化隧道效应、界面键合效应和隧道势垒特性。 制造技术将操纵平面薄膜磁性隧道结中的界面和势垒,以努力最大化自旋极化值。 自旋隧道效应受到隧道势垒中 δ 掺杂剂(有或没有磁矩)的影响 - 主要翻转自旋,除了 Fe 掺杂剂的情况外,甚至提高了自旋隧道效应的概率。 这个领域还有待了解,并将进行深入研究。 最先进的 MBE 系统使得使用新型界面材料设计薄膜成为可能,从而产生独特的电子和磁性特性。 理论支持来自橡树岭国家实验室的 William H. Butler 教授,他的专长是能带结构计算、界面效应以及铁磁隧道结结构。 自旋隧道研究可能会启动,这是重费米子系统中的第一个此类研究,其中发生温度引起的变化和压力引起的磁转变变化。 各级学生和博士后都将参与这项研究,从而建立一个技术专家库,特别是在未来的信息技术领域——自旋电子学、一般磁性以及薄膜科学领域。这个凝聚态物理项目拓宽了我们的基本理解通过使用自旋极化隧道技术(一种量子现象)的独特工具来研究电子自旋特性(磁性的一个主题)。 研究结果将有助于构建未来可能的基于自旋的信息技术所需的知识库。 该项目将以早期在自旋隧道和传输方面的成功工作为基础,并在该项目的后期阶段将通过检查一类新型磁性材料(即所谓的重费米子金属)来推动新领域的发展。 主要目标是扩大目前正在分析自旋隧道实验的理论家之间新的、有前途的互动。 此外,使用最先进的分子束外延工具的制造方法将操纵材料界面和隧道势垒,以创建新型材料并最大化自旋极化值。 测量将在环境温度以及液氦温度和小或大磁场存在的情况下进行。该项目的一些早期成果在实验和理论上引起了全世界的兴趣,许多大公司参与开发非易失性存储元件以及用于超高密度记录的传感器。 该项目将研究与高中生、本科生、研究生和博士后的教育和培训相结合。 培训将涉及自旋传输和纳米技术等专业领域。 受过高等教育和训练有素的人们将为作为基于自旋的信息存储技术领域的教育者和工作者的职业做好充分准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jagadeesh Moodera其他文献

Jagadeesh Moodera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jagadeesh Moodera', 18)}}的其他基金

Correlated Quantum Phenomena at Superconductor/Magnetic Interfaces
超导/磁界面的相关量子现象
  • 批准号:
    2218550
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track C: Synergistic Thrusts Towards Practical Topological Quantum Computing
NSF 融合加速器轨道 C:对实用拓扑量子计算的协同推动
  • 批准号:
    2040620
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Surface/Interface Phenomena and Topological Order in Emerging Quantum Materials
新兴量子材料中的表面/界面现象和拓扑顺序
  • 批准号:
    1700137
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Investigating Two-Dimensional Systems and Surface States Under the Influence of an Internal Exchange Field and Spin-Filtering
研究内部交换场和自旋过滤影响下的二维系统和表面态
  • 批准号:
    1207469
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
2006 Gordon Conference: Magnetic Nanostructures; Queens College; Oxford, UK; September 3-8, 2006
2006年戈登会议:磁性纳米结构;
  • 批准号:
    0628863
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Spin Transport Studies In Band And Interface Tailord Materials: Towards Total Spin Polarization For Spin Electronics
带和界面定制材料中的自旋输运研究:自旋电子学的总自旋极化
  • 批准号:
    0504158
  • 财政年份:
    2005
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
US-India Cooperative Research: Role of Interface in Magnetic Interaction and Spin Polarized Tunneling
美印合作研究:界面在磁相互作用和自旋极化隧道中的作用
  • 批准号:
    9908611
  • 财政年份:
    1999
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Tunneling Studies of Ferromagnetic Junctions and Interfaces
铁磁结和界面的隧道研究
  • 批准号:
    9730908
  • 财政年份:
    1998
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Spin-polarized Electron Tunneling with Ferromagnetic Materials
铁磁材料的自旋极化电子隧道
  • 批准号:
    9423013
  • 财政年份:
    1995
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

非偏振光诱导高光敏性聚酰亚胺液晶取向材料的分子设计和制备
  • 批准号:
    22375135
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
偏振莫比乌斯带奇异性与康普顿散射的光电耦合动力学
  • 批准号:
    12332002
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
远距离偏振三维形貌重建中偏振信息和法线场解精确译研究
  • 批准号:
    62375212
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
鲜蛋胆固醇的近红外偏振光谱响应及在线无损检测机理
  • 批准号:
    32372426
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
日冕仪偏振分析的可溯源校准
  • 批准号:
    42374220
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Development of spin-polarized scanning tunneling luminescence spectroscopy for elucidation of spin-photon conversion in two-dimensional semiconductors
开发自旋偏振扫描隧道发光光谱以阐明二维半导体中的自旋光子转换
  • 批准号:
    17K18766
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Spin-polarized scanning tunneling microscopy on ultrathin iron films on Be(0001)
Be(0001) 上超薄铁膜的自旋偏振扫描隧道显微镜
  • 批准号:
    339482673
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grants
Study on catalytic activity of oxide surface using single molecule labeling and spin polarized tunneling electron spectroscopy
单分子标记和自旋极化隧道电子能谱研究氧化物表面催化活性
  • 批准号:
    16H03863
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spin-Polarized Scanning Tunneling Microscopy of Novel Electronic Materials
新型电子材料的自旋偏振扫描隧道显微镜
  • 批准号:
    420407-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Spin-polarized scanning tunneling spectroscopy on correlated electron systems
相关电子系统上的自旋偏振扫描隧道光谱
  • 批准号:
    219591251
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了