High Performance Algorithms for Electronic Materials

电子材料的高性能算法

基本信息

  • 批准号:
    0130395
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-03-01 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

This grant is supported by the Divisions of Materials Research and Advanced Computational Infrastructure and Research. The research is in the area of computational materials research and involves a collaborative effort in both materials research and computational science. The overall goal of the research is to exploit high performance computers for solving large scale and complex problems that arise in modeling real materials. The research will center on electronic materials with extended and point defects, and non-ideal interfaces and in the form of amorphous solids, atomic clusters, liquids, and glasses.The continuing evolution of high performance computers is creating new opportunities for the application of sophisticated electronic structure techniques to the study of technologically important materials. A few orders of magnitude improvement in speed are feasible in the near future and will enable us to step beyond the current computational limits in materials science and achieve an unprecedented understanding of the physical and electronic properties of materials. Such achievements are not made by progress in computer hardware alone, but depend more so on innovations in algorithms. The development of new algorithms in multidisciplinary research requires an understanding and appreciation of the different disciplines involved by the collaborating members. Based on prior experience of this group, progress can be best made by a close collaboration between computer scientists and materials scientists. Thus, algorithms will be developed, implemented and applied to a number of materials problems.Applications will include: localized systems, atomic clusters and quantum dots; liquids and disordered semiconductors; dilute magnetic semiconductors. Algorithms to be developed include: out-of-core methods; special methods for computing eigenvectors and eigenvalues; avoiding eigenvectors and eigenvalues.%%% This grant is supported by the Divisions of Materials Research and Advanced Computational Infrastructure and Research. The research is in the area of computational materials research and involves a collaborative effort in both materials research and computational science. The overall goal of the research is to exploit high performance computers for solving large scale and complex problems that arise in modeling real materials. The research will center on electronic materials with extended and point defects, and non-ideal interfaces and in the form of amorphous solids, atomic clusters, liquids, and glasses.The continuing evolution of high performance computers is creating new opportunities for the application of sophisticated electronic structure techniques to the study of technologically important materials. A few orders of magnitude improvement in speed are feasible in the near future and will enable us to step beyond the current computational limits in materials science and achieve an unprecedented understanding of the physical and electronic properties of materials. Such achievements are not made by progress in computer hardware alone, but depend more so on innovations in algorithms. The development of new algorithms in multidisciplinary research requires an understanding and appreciation of the different disciplines involved by the collaborating members. Based on prior experience of this group, progress can be best made by a close collaboration between computer scientists and materials scientists. Thus, algorithms will be developed, implemented and applied to a number of materials problems.***
材料研究和先进的计算基础架构和研究的划分支持了这笔赠款。 该研究是在计算材料研究领域的,涉及材料研究和计算科学方面的协作努力。 该研究的总体目标是利用高性能计算机来解决对真实材料进行建模时出现的大规模和复杂问题。 该研究将以扩展和点缺陷以及非理想界面以及无定形固体,原子簇,液体和眼镜的形式集中于电子材料。电子结构技术研究了技术重要的材料。 在不久的将来,速度的几个数量级提高是可行的,它将使我们能够超越材料科学的当前计算限制,并对材料的物理和电子特性实现前所未有的理解。 此类成就不是仅仅是仅凭计算机硬件的进度来取得的,而是更多地取决于算法中的创新。 多学科研究中新算法的发展需要对合作成员所涉及的不同学科的理解和欣赏。 根据该小组的先前经验,可以通过计算机科学家与材料科学家之间的密切合作来取得进步。 因此,将开发,实施,应用于许多材料问题。应用程序包括:局部系统,原子簇和量子点;液体和无序的半导体;稀磁半导体。 要开发的算法包括:核心外方法;计算特征向量和特征值的特殊方法;避免特征向量和特征值。%% %%材料研究和先进的计算基础设施和研究的划分支持。 该研究是在计算材料研究领域的,涉及材料研究和计算科学方面的协作努力。 该研究的总体目标是利用高性能计算机来解决对真实材料进行建模时出现的大规模和复杂问题。 该研究将以扩展和点缺陷以及非理想界面以及无定形固体,原子簇,液体和眼镜的形式集中于电子材料。电子结构技术研究了技术重要的材料。 在不久的将来,速度的几个数量级提高是可行的,它将使我们能够超越材料科学的当前计算限制,并对材料的物理和电子特性实现前所未有的理解。 此类成就不是仅仅是仅凭计算机硬件的进度来取得的,而是更多地取决于算法中的创新。 多学科研究中新算法的发展需要对合作成员所涉及的不同学科的理解和欣赏。 根据该小组的先前经验,可以通过计算机科学家与材料科学家之间的密切合作来取得进步。 因此,将开发,实施,应用于许多材料问题。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Chelikowsky其他文献

James Chelikowsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Chelikowsky', 18)}}的其他基金

DMREF:SusChEM:Collaborative Research: Design and Synthesis of Novel Magnetic Materials
DMREF:SusChEM:合作研究:新型磁性材料的设计与合成
  • 批准号:
    1729202
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
DMREF:SusChEM:Collaborative Research: Design and Synthesis of Novel Magnetic Materials
DMREF:SusChEM:合作研究:新型磁性材料的设计与合成
  • 批准号:
    1435219
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative: Extensible Languages for Sustainable Development of High Performance Software in Materials Science
协作:用于材料科学高性能软件可持续开发的可扩展语言
  • 批准号:
    1047997
  • 财政年份:
    2010
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CDI-TYPE I-COLLABORATIVE Materials Informatics: Computational Tools for Discovery and Design
CDI-TYPE I-COLLABORATIVE 材料信息学:用于发现和设计的计算工具
  • 批准号:
    0941645
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
ITR: Institute for the Theory of Advanced Materials in Information Technology
ITR:信息技术先进材料理论研究所
  • 批准号:
    0551195
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
ITR: Institute for the Theory of Advanced Materials in Information Technology
ITR:信息技术先进材料理论研究所
  • 批准号:
    0325218
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
High Performance Algorithms for Electronic Materials
电子材料的高性能算法
  • 批准号:
    9873664
  • 财政年份:
    1999
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
High Performance Algorithms for Electronic Materials
电子材料的高性能算法
  • 批准号:
    9525885
  • 财政年份:
    1995
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Interface Formation with Atoms, Ions, and Clusters
原子、离子和团簇的界面形成
  • 批准号:
    9216178
  • 财政年份:
    1993
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Massively Parallel Algorithms for Modeling the Structure of Liquids and Liquid-Solid Interfaces
用于模拟液体结构和液固界面的大规模并行算法
  • 批准号:
    9217287
  • 财政年份:
    1992
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

医用电子直线加速器设计模型中非线性特征值问题的算法及相关预处理研究
  • 批准号:
    12371379
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
应用于复杂气体流场的飞秒激光电子激发示踪测速技术信号增强与算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
用于非小细胞肺癌免疫疗效预测的复合传感模式电子鼻构建及智能算法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
基于晶体塑性有限元的电子束焊接精确应力仿真算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于非线性动力学-算法微分的电力电子化电力系统动态稳定研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
  • 批准号:
    10604723
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了