Studies of Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用研究
基本信息
- 批准号:0098246
- 负责人:
- 金额:$ 59.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational geometry covers a wide range of applications, such as motion planning and computer graphics, and its contribution to their solution involves the use of sophisticated techniques drawn from many branches of mathematics and computer science. The investigators extensively study many basic and applied problems in the area, including motion planning, Voronoi diagrams, combinatorial and algebraic analysis of arrangements of curves and algebraic surfaces, graph drawing, randomized algorithms, and geometric optimization.A major portion of this research involves the study of arrangements of curves and surfaces. The significant progress made by the PI's on these problems during the past 15 years has opened up many new challenging research directions, including:Combinatorial and algorithmic problems related to substructures (lower envelopes, single cells, zones, levels, vertical decompositions) in arrangements of surfaces in higher dimensions. Related algorithms in real algebraic geometry for computing connected components, stratifications, the dimension and othertopological parameters of real semi-algebraic sets. Graph drawing and other algorithmic, combinatorial, and topological problems involving planar arrangements of segments or curves. Applications of these results to numerous areas, including motion planning in robotics, rendering and modeling problems in computer graphics, generalized Voronoi diagrams and geometric optimization problems, including problems in metrology and facility location. An important feature of this research is the cross-fertilization between basic research in computational and combinatorial geometry and various application areas. Another theme is the strong connection between the combinatorial analysis of arrangements and the design of efficient algorithms for constructing and utilizing these structures. The efficiency of the algorithms often crucially depends on the size of the structure to be computed, and most of the work is devoted to bounding this quantity.
计算几何涵盖了广泛的应用,例如运动规划和计算机图形学,其对解决方案的贡献涉及使用来自数学和计算机科学许多分支的复杂技术。研究人员广泛研究该领域的许多基础和应用问题,包括运动规划、Voronoi 图、曲线和代数曲面排列的组合和代数分析、图形绘制、随机算法和几何优化。这项研究的主要部分涉及研究曲线和曲面的排列。 PI 在过去 15 年中在这些问题上取得的重大进展开辟了许多新的具有挑战性的研究方向,包括:与子结构(下封套、单单元、区域、水平、垂直分解)相关的组合和算法问题更高维度的表面。 实代数几何中用于计算实半代数集的连通分量、分层、维数和其他拓扑参数的相关算法。 图形绘制以及涉及线段或曲线的平面排列的其他算法、组合和拓扑问题。 这些结果可应用于众多领域,包括机器人运动规划、计算机图形学中的渲染和建模问题、广义维诺图和几何优化问题,包括计量和设施选址问题。 这项研究的一个重要特点是计算几何和组合几何的基础研究与各种应用领域之间的交叉融合。 另一个主题是排列的组合分析与构建和利用这些结构的有效算法的设计之间的紧密联系。算法的效率通常很大程度上取决于要计算的结构的大小,并且大部分工作都致力于限制这个数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Pollack其他文献
Richard Pollack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Pollack', 18)}}的其他基金
Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
- 批准号:
0830272 - 财政年份:2008
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
2007 Fall Workshop on Computational Geometry
2007 年秋季计算几何研讨会
- 批准号:
0735377 - 财政年份:2007
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
Geometric Arrangements and their Algorithmic Applications
几何排列及其算法应用
- 批准号:
0514079 - 财政年份:2005
- 资助金额:
$ 59.8万 - 项目类别:
Continuing Grant
Studies of Geometric Algorithms and Their Applications
几何算法及其应用研究
- 批准号:
9732101 - 财政年份:1998
- 资助金额:
$ 59.8万 - 项目类别:
Continuing Grant
Combinatorial Algorithms in Real Algebraic Geometry
实代数几何中的组合算法
- 批准号:
9711240 - 财政年份:1997
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
Studies of Geometric Algorithms and Their Applicatins
几何算法及其应用研究
- 批准号:
9424398 - 财政年份:1995
- 资助金额:
$ 59.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
9400293 - 财政年份:1994
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
Combinatorial Algorithms and Real Algebraic Geometry
组合算法和实代数几何
- 批准号:
9402640 - 财政年份:1994
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
Mathematical Sciences: The Geometry of Configurations
数学科学:构型几何
- 批准号:
8501947 - 财政年份:1985
- 资助金额:
$ 59.8万 - 项目类别:
Continuing Grant
The Geometry of Configurations (Mathematics)
配置的几何(数学)
- 批准号:
8201342 - 财政年份:1982
- 资助金额:
$ 59.8万 - 项目类别:
Standard Grant
相似国自然基金
离散物理系统的通用几何图学习理论方法
- 批准号:62376276
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于透视几何约束一致性的跨域刚体单目位姿估计
- 批准号:12302252
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肌特征尺度下几何结构和电刺激调控工程化心肌组织成熟及应用的研究
- 批准号:32301137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中心折反射的多视图几何
- 批准号:62366056
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
复流形上蒙日-安培型方程理论以及几何问题的研究
- 批准号:12371078
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2022
- 资助金额:
$ 59.8万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2022
- 资助金额:
$ 59.8万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2021
- 资助金额:
$ 59.8万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2021
- 资助金额:
$ 59.8万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Convex Bodies - the Discrete Geometric Side
凸体的排列——离散几何边
- 批准号:
RGPIN-2019-03954 - 财政年份:2020
- 资助金额:
$ 59.8万 - 项目类别:
Discovery Grants Program - Individual