ITR: A New Computational Paradigm: Robustness as a Resource

ITR:新的计算范式:作为资源的鲁棒性

基本信息

  • 批准号:
    0082056
  • 负责人:
  • 金额:
    $ 48.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

The problem of numerical robustness and geometric consistency is well knownin many areas of computational science. The issue is that inexact computer arith-metic leads to incorrect and inconsistent geometric conclusions (for example, is apoint inside or outside a triangle). While computers are getting faster, softwareis not getting more robust. Indeed, the trend is towards more nonrobustness. Wepropose a new computational paradigm to reverse this trend.Robustness is often seen as an all-or-nothing proposition. Our new paradigmconsists in viewing robustness as a computational resource, to be traded off againstother resources such as speed. Each program defines a certain robustness-speedtrade-off curve; we want to be able to run the program at any point along thiscurve. This proposal will develop the technology to make this capability effcientand easily accessible to all programmers. As a result, any programmer can producenearly ordinary C/C++ code which can be run robustly. The implications of thisparadigm are wide ranging, and will bring the fruits of robustness research intomainstream computing.We propose to (1) conduct basic research to support this new computingparadigm, (2) to create the technology and software tools to achieve this paradigm,and (3) to explore the applications of fast and usually robust algorithms in algo-rithm design. For (1), we will focus on effciency issues such as novel root bounds,incremental computation, guaranteed absolute precision for elementary functions.For (2), we expect to significantly extend the power, efficiency and usability of ourCore Library and include capabilities such as symbolic perturbation. Finally anexample of (3) concerns the general problem of checking of geometric structures andtheir applications in new efficient geometric algorithms.We propose to apply our robustness techniques and software to two significantapplications in which nonrobustness problems are well-known:* Mesh Generation: we will construct the first fully robust mesh generator whichwill be deployed in a major ow solver system, Cart3d.* Geometric Modeling: we will build a robust geometric modeler which will bethe first such system that is precision-sensitive.This proposal involves international collaboration with Professor Mehlhorn'sAlgorithms and Complexity Group at the Max-Planck Institute of Computer Sci-ence in Germany. Our domestic collaborator are Michael Aftosmis from NASAAmes Research Center (on mesh generation) and Shankar Krishnan from AT&TResearch Laboratories (on geometric modeling).
数值鲁棒性和几何一致性问题在计算科学的许多领域是众所周知的。问题在于,不精确的计算机算术会导致不正确且不一致的几何结论(例如,点是在三角形内部还是外部)。虽然计算机变得越来越快,但软件并没有变得更加强大。事实上,趋势是变得更加不稳健。我们提出了一种新的计算范式来扭转这一趋势。鲁棒性通常被视为一个全有或全无的命题。我们的新范式将稳健性视为一种计算资源,需要与速度等其他资源进行权衡。每个程序都定义了一定的鲁棒性-速度权衡曲线;我们希望能够在这条曲线上的任何一点运行该程序。该提案将开发一项技术,使所有程序员都能高效且轻松地使用此功能。因此,任何程序员都可以生成可以稳健运行的几乎普通的 C/C++ 代码。这个范式的影响是广泛的,并将把鲁棒性研究的成果带入主流计算。我们建议(1)进行基础研究来支持这个新的计算范式,(2)创建实现这个范式的技术和软件工具,以及(3) 探索快速且鲁棒的算法在算法设计中的应用。对于(1),我们将重点关注效率问题,例如新颖的根界限、增量计算、保证初等函数的绝对精度。对于(2),我们期望显着扩展我们核心库的功能、效率和可用性,并包括以下功能作为象征性扰动。最后(3)的一个例子涉及几何结构检查的一般问题及其在新的高效几何算法中的应用。我们建议将我们的鲁棒性技术和软件应用于非鲁棒性问题众所周知的两个重要应用:*网格生成:我们将构建第一个完全鲁棒的网格生成器,它将部署在主要的流求解器系统 Cart3d 中。* 几何建模:我们将构建一个鲁棒的几何建模器,这将是第一个对精度敏感的系统。该提案涉及与德国马克斯普朗克计算机科学研究所 Mehlhorn 教授的算法和复杂性小组。我们的国内合作者是来自 NASAAmes 研究中心的 Michael Aftosmis(网格生成)和来自 AT&T 研究实验室的 Shankar Krishnan(几何建模)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Yap其他文献

Chelation effects in the binding of bidentate ligands by a face-to-face zinc porphyrin
面对面锌卟啉与双齿配体结合的螯合效应
  • DOI:
    10.1039/p19900000421
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian P. Danks;I. Sutherland;Chee Yap
  • 通讯作者:
    Chee Yap
Robust Parameter Estimation for Rational Ordinary Differential Equations
有理常微分方程的鲁棒参数估计
Erratum for “Global Identifiability of Differential Models”
“差分模型的全局可识别性”勘误表
The exact computation paradigm
精确计算范式
  • DOI:
    10.1142/9789812831699_0011
  • 发表时间:
    1995-09-13
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Chee Yap;Thomas Dubé
  • 通讯作者:
    Thomas Dubé

Chee Yap的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Yap', 18)}}的其他基金

Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
  • 批准号:
    2212462
  • 财政年份:
    2022
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
  • 批准号:
    1853482
  • 财政年份:
    2019
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research:Numerical Algebraic Differential Equations
AF:媒介:协作研究:数值代数微分方程
  • 批准号:
    1564132
  • 财政年份:
    2016
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Continuing Grant
AF: Small: Numeric-Symbolic Techniques for Geometric Problems in Algebra and Analysis
AF:小:代数和分析中几何问题的数值符号技术
  • 批准号:
    1423228
  • 财政年份:
    2014
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
AF: Small: Analysis Algorithms: Continuous and Algebraic Amortization
AF:小:分析算法:连续和代数摊销
  • 批准号:
    0917093
  • 财政年份:
    2009
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
Complete Adaptive Algorithms for Curves and Surfaces and their Complexity
曲线和曲面及其复杂性的完整自适应算法
  • 批准号:
    0728977
  • 财政年份:
    2007
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Continuing Grant
A Theory of Real Approximations, with Applications
实数近似理论及其应用
  • 批准号:
    0430836
  • 财政年份:
    2004
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Continuing Grant
Algorithmic Development of Visualization Under Foveated Geometries
焦点几何下可视化的算法开发
  • 批准号:
    9619846
  • 财政年份:
    1997
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
Manufacturing and Computational Geometry Workshop, April l994, New York University
制造和计算几何研讨会,1994 年 4 月,纽约大学
  • 批准号:
    9400502
  • 财政年份:
    1994
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
Exact Geometric Computation
精确的几何计算
  • 批准号:
    9402464
  • 财政年份:
    1994
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant

相似国自然基金

顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
一种非累乘型联合条件概率计算的新证据权方法及其在矿产资源定量评价中的应用研究
  • 批准号:
    41562018
  • 批准年份:
    2015
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
基于2型糖尿病新靶点Smad3设计的新型化合物的合成及活性研究
  • 批准号:
    81302639
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
铂催化剂的新载体-核壳型纳米复合物的设计、制备及作用机理
  • 批准号:
    20706010
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于概率型算子与概率分布的曲线曲面造型新算法研究
  • 批准号:
    10571145
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 48.99万
  • 项目类别:
    EU-Funded
Participating in Literacies and Computer Science: A research-practice partnership to explore new computational literacies
参与读写能力和计算机科学:探索新计算读写能力的研究与实践伙伴关系
  • 批准号:
    2420361
  • 财政年份:
    2024
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
  • 批准号:
    2337602
  • 财政年份:
    2024
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309651
  • 财政年份:
    2023
  • 资助金额:
    $ 48.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了