High-Order Embedded Interface Methods for Wave-Problems

波动问题的高阶嵌入式接口方法

基本信息

  • 批准号:
    0074257
  • 负责人:
  • 金额:
    $ 7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

We propose to develop a new family of stable high-order finitedifference methods suitable for the solution of wave problemsinvolving many interfaces and significant geometric complexity.These complications are addressed by embedding the computationalproblem into a Cartesian grid and formulating methods such thatthe position of the material interfaces as well as the physicalproperties of the solution across the interface is accounted forproperly to the order of the scheme. Staggered grid as well asnon-staggered grid methods will be explored with the emphasis onthe development of a rigorous mathematical foundation for theseschemes to ensure robustness and uniform stability for all grid sizes and embedded geometries. Appealing properties of embeddingmethods such as the ability to model moving interfaces and theintroduction of virtual interfaces to enhance parallel performancewill be exploited to model a variety of wave problems inelectromagnetics, acoustics, seismology, and elasticity.The increasing interest in the accurate and efficient solutionof wave-dominated problems, e.g. problems in acoustic and electromagnetics, over very long periods of time has spawned an interest in the formulation of high-order accurate computationalmethods for such problems. In this effort we propose to developa new class of computational techniques, specifically aimed atthe reliable and robust modeling of problems of a realisticsize and complexity, e.g., the modeling of the propagation ofelectromagnetic and acoustic noise and its environmental impact, andthe modeling of underground waves of interest to the oil industry.The proposed methods are unique in maintaining a very simple computational structure without sacrificing the accuracy, henceovercoming a number of well known difficulties associated withexisting methods which require some kind of automated generation ofthe computational grid on which the solution is computed.These proposed developments will enable the modeling ofvery complex and realistic scenarios and will, in combination with high-performance computing facilities for which themethods are well suited, allow for the modeling and analysisof complex wave dominated problems in a variety of areas of interestto engineers and scientists.
我们建议开发一类新的稳定高阶有限差分方法,适用于解决涉及许多界面和显着几何复杂性的波动问题。通过将计算问题嵌入笛卡尔网格并制定方法来解决这些复杂问题,以便材料界面的位置以及跨界面的解决方案的物理属性都根据方案的顺序正确考虑。将探索交错网格和非交错网格方法,重点是为这些方案开发严格的数学基础,以确保所有网格尺寸和嵌入几何形状的鲁棒性和均匀稳定性。嵌入方法的吸引人的特性,例如对移动界面进行建模的能力以及引入虚拟接口以增强并行性能,将被用来对电磁学、声学、地震学和弹性中的各种波动问题进行建模。人们对准确有效地解决波动问题越来越感兴趣。主导问题,例如声学和电磁学问题在很长一段时间内引起了人们对制定此类问题的高阶精确计算方法的兴趣。在这项工作中,我们建议开发一类新型计算技术,专门针对现实规模和复杂性问题的可靠和鲁棒建模,例如,电磁和声学噪声的传播及其环境影响的建模,以及地下波的建模所提出的方法在保持非常简单的计算结构而不牺牲准确性方面是独特的,因此克服了与现有方法相关的许多众所周知的困难,现有方法需要某种自动生成解决方案的计算网格这些拟议的发展将能够对非常复杂和现实的场景进行建模,并将与这些方法非常适合的高性能计算设施相结合,允许对工程师感兴趣的各种领域中复杂的波浪主导问题进行建模和分析和科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Hesthaven其他文献

Jan Hesthaven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Hesthaven', 18)}}的其他基金

FRG: Collaborative Research: Developing Spectral Methods for Numerical Solutions of the Einstein Equations
FRG:合作研究:开发爱因斯坦方程数值解的谱方法
  • 批准号:
    0554377
  • 财政年份:
    2006
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
7th International Conference on Mathematical and Numerical Aspects of Waves (WAVES'05)
第七届波的数学和数值方面国际会议 (WAVES05)
  • 批准号:
    0456491
  • 财政年份:
    2005
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
  • 批准号:
    0325110
  • 财政年份:
    2004
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research (INRIA): Approximate Boundary Conditions for Computational Wave Problems
美法合作研究(INRIA):计算波浪问题的近似边界条件
  • 批准号:
    0307475
  • 财政年份:
    2003
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
CAREER: Towards Robust and Efficient High-Order Adaptive Computational Methods for Conservation Laws in Complex Geometries -- Analysis, Implementation, and Applications
职业:复杂几何守恒定律的稳健高效高阶自适应计算方法——分析、实现和应用
  • 批准号:
    0132967
  • 财政年份:
    2002
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似国自然基金

SMA筋嵌入式补强混凝土框架结构的界面力学行为与抗震变形控制研究
  • 批准号:
    52178106
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
嵌入式钙钛矿/无机空穴传输层/碳界面的构建及其在太阳能电池中的应用
  • 批准号:
    51802102
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
嵌入式FRP与混凝土粘结界面基于塑性损伤理论的数值模拟及试验研究
  • 批准号:
    51608137
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
深海嵌入式板锚循环拉拔过程模拟及承载特性研究
  • 批准号:
    51309213
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于嵌入式压电材料的不规则多腔钢管混凝土缺陷监测及谱元法机理研究
  • 批准号:
    51278185
  • 批准年份:
    2012
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

Embedded Printing of Human Respiratory Model with Air-Liquid Interface for COVID-19 Research
用于 COVID-19 研究的具有气液界面的人体呼吸模型的嵌入式打印
  • 批准号:
    10353655
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
Embedded Printing of Human Respiratory Model with Air-Liquid Interface for COVID-19 Research
用于 COVID-19 研究的具有气液界面的人体呼吸模型的嵌入式打印
  • 批准号:
    10671456
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
Development of quantum sensing technique by using single photon sources embedded in 4H-SiC MOSFET
利用嵌入 4H-SiC MOSFET 中的单光子源开发量子传感技术
  • 批准号:
    20J15088
  • 财政年份:
    2020
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
a long-term children's mental health assessment system using sensor-embedded block-shaped tangible user interfaces
使用嵌入传感器的块状有形用户界面的长期儿童心理健康评估系统
  • 批准号:
    20J14480
  • 财政年份:
    2020
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A novel mechanism of collective migration of cohesive cells embedded in 3D space
嵌入 3D 空间的粘性细胞集体迁移的新机制
  • 批准号:
    20K03871
  • 财政年份:
    2020
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了