Dynamics of Ultrafast Magnetization in Magnetic Thin Films and Heterostructures

磁性薄膜和异质结构中超快磁化的动力学

基本信息

  • 批准号:
    0074080
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-11-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

This Focused Research Group project involves two faculty members and several industrial collaborators who will study ultrafast, spin dependent processes that reflect nonequilibrium magnetization dynamics in ferromagnetic thin films and heterostructures on a picosecond time scale and below. A core question relates to the ultimate "speed limits" of magnetization reversal, which will be approached experimentally by employing all-optical, ultrashort pulse laser techniques. Unlike conventional approaches, which use pulsed magnetic fields to study magnetization switching in storage media, the physics in this research focuses on selective optical excitations of spins within the ordered magnetic medium, so as to modulate the exchange interaction and related electronic correlations by light in an nonthermal manner. In addition to studying optically activated magnetoelectronic processes in laterally uniform magnetic multilayers and exchange biased bi- and multilayers, the project includes the study the dynamics of collective micromagnetic effects in high density planar arrays where the individual submicron magnetic particles are coupled via dipolar (or possibly exchange bias) forces. Thin films of conventional transition metals (Co, NiFe) form the starting materials base for the project work, but a significant component of the research emphasizes selected transition metal oxides, most notably the half metallic ferromagnet CrO2. The research involves students and postdocs in cutting-edge fundamental research that has immediate relevance to current technology. The training prepares student for a variety of careers in academe, industry or government.%%%The slowest part of a typical computer is the magnetic hard drive. While there are several steps involved in storing and retrieving data from the thin film disk medium, the process of encoding information into magnetically aligned atoms is reaching its practical limits of speed. In this project work we aim to use ultrashort laser pulses to influence the disk material's magnetic properties and to achieve the reversing the magnetic alignment of groups of atoms in as little as a few trillionth of a second-approximately a hundred times faster than the speed of the process in today's disk drives. The all-optical technique allows the team to investigate the fundamental interactions involved in such fast magnetic switching, and it may lead to extremely fast data storage devices in the future. One specific approach focuses on aiming the laser pulses at a sandwich of two magnetically coupled thin film magnetic films, whose collective interaction determines the overall magnetic properties of the bilayer which is efficient in resisting an externally applied magnetic field. By selectively absorbing the laser radiation at the interface, only a few atomic layers thick, the magnetic coupling between the two materials is abruptly interrupted, freeing one of the layers (the 'free' ferromagnet) to be rapidly reversed by an oppositely-directed static magnetic field, applied from the outside. While the concept could some day be used in fast data storage, the team will be using it mostly to study the basic processes of "flipping ultrasmall compass needles" at unprecedented speeds. Many physicists have studied the reversal of a single atom's magnetic moment, but the collective process of flipping the moments of many thousands of atoms at once is not well understood at a fundamental level. The research involves students and postdocs in cutting-edge fundamental research that has immediate relevance to current technology. The training prepares student for a variety of careers in academe, industry or government
这个重点研究小组项目涉及两名教员和几名工业合作者,他们将研究超快的自旋相关过程,这些过程反映皮秒及以下时间尺度的铁磁薄膜和异质结构中的非平衡磁化动力学。 一个核心问题涉及磁化反转的最终“速度限制”,这将通过采用全光学、超短脉冲激光技术进行实验来解决。 与使用脉冲磁场研究存储介质中的磁化翻转的传统方法不同,本研究中的物理学重点是有序磁介质内自旋的选择性光学激发,以便通过光来调制交换相互作用和相关的电子相关性。非热方式。除了研究横向均匀磁性多层和交换偏置双层和多层中的光激活磁电过程之外,该项目还包括研究高密度平面阵列中集体微磁效应的动力学,其中各个亚微米磁性粒子通过偶极(或可能)耦合交换偏差)的力量。 传统过渡金属(Co、NiFe)薄膜构成了该项目工作的起始材料基础,但该研究的一个重要组成部分强调了选定的过渡金属氧化物,尤其是半金属铁磁体 CrO2。 该研究涉及与当前技术直接相关的尖端基础研究的学生和博士后。 该培训帮助学生为学术界、工业界或政府的各种职业做好准备。%%%典型计算机中最慢的部分是磁性硬盘驱动器。 虽然从薄膜磁盘介质存储和检索数据涉及多个步骤,但将信息编码为磁性排列原子的过程已达到其实际速度极限。 在这个项目工作中,我们的目标是使用超短激光脉冲来影响磁盘材料的磁性,并在短短几万亿分之一秒内实现原子团磁性排列的反转,大约比磁盘速度快一百倍。当今磁盘驱动器中的过程。 全光学技术使团队能够研究这种快速磁切换所涉及的基本相互作用,并且它可能会在未来带来极快的数据存储设备。 一种具体方法侧重于将激光脉冲瞄准两个磁耦合薄膜磁性薄膜的夹层,其集体相互作用决定了双层的整体磁特性,双层可以有效地抵抗外部施加的磁场。 通过在只有几个原子层厚的界面处选择性地吸收激光辐射,两种材料之间的磁耦合突然中断,释放其中一层(“自由”铁磁体),从而通过相反方向的静电快速反转磁场,从外部施加。虽然这个概念有一天可以用于快速数据存储,但该团队将主要使用它来研究以前所未有的速度“翻转超小型罗盘针”的基本过程。 许多物理学家已经研究了单个原子磁矩的反转,但在基本层面上还没有很好地理解同时翻转数千个原子磁矩的集体过程。 该研究涉及与当前技术直接相关的尖端基础研究的学生和博士后。 培训为学生在学术界、工业界或政府部门的各种职业做好准备

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arto Nurmikko其他文献

Arto Nurmikko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arto Nurmikko', 18)}}的其他基金

Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322600
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Bidirectional Wireless Optoelectronic Device for Interfacing Brain Circuits
用于连接大脑电路的双向无线光电装置
  • 批准号:
    1402803
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
An Optoelectronics Device to Write-In and Read-Out Activity in Brain Circuits
用于写入和读出脑电路活动的光电装置
  • 批准号:
    1264816
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Red-Green-Blue Colloidal Quantum Dots for Full Spectrum Microlasers
用于全光谱微型激光器的红-绿-蓝胶体量子点
  • 批准号:
    1128331
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Photonically Strongly Coupled Organic/Inorganic Nanocomposites for Light Emitter and Photovoltaic Applications
用于发光体和光伏应用的光子强耦合有机/无机纳米复合材料
  • 批准号:
    0725740
  • 财政年份:
    2007
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Biophotonics: Dynamical Cellular Imaging by Compact Arrays of Blue and Ultraviolet Light Emitting Diodes
生物光子学:通过蓝色和紫外发光二极管紧凑阵列进行动态细胞成像
  • 批准号:
    0423566
  • 财政年份:
    2004
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Vertical Cavity Blue and Ultraviolet Light Emitters
垂直腔蓝光和紫外光发射器
  • 批准号:
    0070887
  • 财政年份:
    2000
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Acquisition of an Ultrafast Laser Spectrometer/Metrology System
购置超快激光光谱仪/计量系统
  • 批准号:
    9871213
  • 财政年份:
    1998
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Research on Blue and Near Ultraviolet Diode Lasers
蓝光及近紫外二极管激光器的研究
  • 批准号:
    9726938
  • 财政年份:
    1998
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

声子和热化电子对超快磁化动力学过程影响机理的研究
  • 批准号:
    51976025
  • 批准年份:
    2019
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
垂直易磁化的半金属性磁矩补偿型人工结构的设计、制备与磁动力学特性研究
  • 批准号:
    11874349
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
垂直磁化交换耦合复合薄膜结构的超快自旋动力学研究
  • 批准号:
    51671057
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
超高记录密度亚铁磁薄膜超快全光磁化反转动力学研究
  • 批准号:
    61308038
  • 批准年份:
    2013
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
垂直磁化薄膜的超快磁动力学进动阻尼特性研究
  • 批准号:
    51171047
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
  • 批准号:
    560174-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
  • 批准号:
    560174-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimal control simulation of ultrafast coherent dynamics of ferroic systems
铁系统超快相干动力学的最优控制模拟
  • 批准号:
    20K05414
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultrafast magnetization dynamics in perovskite films and heterostructures
钙钛矿薄膜和异质结构中的超快磁化动力学
  • 批准号:
    399572199
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grants
Ultrafast magnetization dynamics and spin transport in magnetic oxide heterostructures (A09)
磁性氧化物异质结构中的超快磁化动力学和自旋输运 (A09)
  • 批准号:
    397775129
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了