Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
基本信息
- 批准号:0070674
- 负责人:
- 金额:$ 52.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator (Gross) and his colleagues (Kazhdan and Sommers) areworking on an assortment of problems in number theory, representationtheory, and algebraic geometry. Gross will study Fourier coefficients formodular forms on quaternionic real groups (with N. Wallach), theexceptional theta correspondences in the style of Siegel (with W.T. Gan),and various theories of modular forms modulo a prime. He will alsoinvestigate subvarieties of Shimura varieties in the middle dimension andmotives with a fixed Galois group (with G. Savin). Kazhdan will work onLanglands' lifting and the theory of unipotent crystals, perverse sheaveson loop spaces, and the theory of algebraic integration. Sommers willstudy representations arising from covers of nilpotent orbits and attemptto resolve the normality question for the closure of nilpotent orbits in acomplex Lie algebra. He will also study connections with unitaryrepresentations of complex Lie groups. The proposal deals with several questions in the subfields ofmathematics known as number theory, representation theory, and algebraicgeometry. Many of these questions are motivated by the philosophy thatalgebraic information can be obtained by geometric methods. At the centerof the work is the use of a symmetry group, or algebraic group, which isan object that is both algebraic and geometric in nature. These symmetrygroups arise naturally in physics and chemistry. It is not too ambitiousto say that the solution to the problems in this proposal will one dayaffect research in cryptography, theoretical physics, and quantumcomputing.
研究人员(Gross)和他的同事(Kazhdan和Sommers)正在研究数字理论,代表理论和代数几何形状中的各种问题。 Gross将在Quaternionic Real群体(带有N. Wallach),Siegel(带有W.T. GAN)风格的TheTa theta对应方面研究傅立叶系数形式以及模块化形式的各种理论。 他还将通过固定的Galois组(与G. Savin)进行中等维度和动力的Shimura品种的亚村庄进行评估。 Kazhdan将在Onlanglands的提升和一般晶体,不正当的Sheaveson Loop空间和代数整合理论的理论上工作。 索默斯(Sommers)威尔(Sommers Will)的表示是由nilpotent轨道的覆盖物引起的,并试图解决正态性问题,以关闭Acomplex中的nilpotent Orbits lie代数。他还将研究复杂谎言群体的统一分数的联系。该提案涉及数字理论,表示理论和代数测定法的数字子领域的几个问题。 这些问题中的许多是出于哲学的动机,即可以通过几何方法获得algebraic信息。 工作的中心是使用对称组或代数群的使用,该对象本质上是代数和几何的Isan对象。 这些对称组自然出现在物理和化学中。不太容易说,解决该提案中问题的解决方案将在密码学,理论物理学和量子量表中进行日间研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Benedict Gross的其他基金
Representation Theory, Automorphic Forms, and Complex Geometry
表示论、自守形式和复几何
- 批准号:13028481302848
- 财政年份:2013
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: Periods of automorphic forms and applications to L-functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:10655271065527
- 财政年份:2011
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Standard GrantStandard Grant
Topics in representation theory and number theory
表示论和数论主题
- 批准号:09011020901102
- 财政年份:2009
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Standard GrantStandard Grant
Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
- 批准号:97004779700477
- 财政年份:1997
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Continuing GrantContinuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:84163738416373
- 财政年份:1984
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
数字技术创新网络结构与企业生产率增长研究:基于专利引用数据的理论与实证
- 批准号:72303018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字特征模理论及其在宽频带中辐射散射一体化的调控研究
- 批准号:62371355
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于数字照护生态系统理论的社区老人长期服务和支持的动力机制研究
- 批准号:72304071
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
互补理论视角下组织资本对企业数字化转型的影响研究
- 批准号:72303145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
服务贸易数字化的理论与实证研究:基于电影行业的视角
- 批准号:72373049
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
- 批准号:RGPIN-2021-02474RGPIN-2021-02474
- 财政年份:2022
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:559329-2021559329-2021
- 财政年份:2022
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - DoctoralAlexander Graham Bell Canada Graduate Scholarships - Doctoral
REU Site: Algebra, Graphs, and Number Theory at the University of Texas at Tyler
REU 网站:德克萨斯大学泰勒分校的代数、图和数论
- 批准号:21499212149921
- 财政年份:2022
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Standard GrantStandard Grant
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
- 批准号:RGPIN-2021-02474RGPIN-2021-02474
- 财政年份:2021
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:559329-2021559329-2021
- 财政年份:2021
- 资助金额:$ 52.7万$ 52.7万
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - DoctoralAlexander Graham Bell Canada Graduate Scholarships - Doctoral