Microscale Adaptive Optical Wavefront Correction

微尺度自适应光学波前校正

基本信息

  • 批准号:
    0010026
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

Phase distortions due to inhomogeneities in the optical path severely limit the perforinancc of a large class of optical systems for ground-to-ground and space communications, imaging through the atmosphere, medical laser beam focusing, among others. Demands on increased spatial resolutions and larger bandwidths call for an integrated approach to adaptive optics that modulates the wavefront in parallel at microscopic scale.This collaborative effort combines expertise in adaptive optics, analog parallel very-large scale integrated (VLSI) niicrosys-tems, microfabrication and liquid-crystal molecular systems to create a new generation of adaptive micro-optical systems for high-resolution wavefront correction, with over 10,000 fully autonomous control elements integrated on a single, hybrid opti-cal/electronic chip. Autonomy is essential for high-bandwidth operation, and is obtained by integrating all adaptive functions directly on-chip.At the architectural level, model-free adaptive control is implemented using parallel perturbation stochastic gradient descent optimization of an arbitrary, externally provided metric of system performance. At the physical level, high-speed wavefront control at micro-scale resolution is obtained by integrating a new type of fast nematic liquid-crystal (LC), operating at kilohertz- range bandwidths, onto the adaptive control chip. Silicon-on-sapphire (SoS) technology with ultra-thin silicon (UTSi) transis-tors provides a high-quality, low-noise, transparent active medium for high-density optical and electronic integration. We will investigate microscale structures of LC material sandwiched in between two transparent SoS wafers, implementing arrays of phase modulators with active electrodes implementing the adaptive algorithms in parallel. directly interfacing with the wave- front. The architectural and technological innovations combine to yield a projected system performance in excess of 108 control updates/sec. at least a factor 1,000 better than presently existing adaptive optics systems in speed, density and cost.This program integrates research and education in a sequence of project-intensive courses, where teams of graduate and undergraduate students learn to design. prototype and test adaptive optics co-processors, implemented in analog VLSI and fabricated through MOSIS. The adaptive co-processors will be configured to externally control a variety of fast LC and other spatial light phase modulators, available for experimentation at the Army Research Laboratory (ARL). In addition, we will make use of full-size UTSi SoS wafers provided by Peregrine Semiconductor, custom-fabricated in a special arrangement with Hopkins, to prototype a fully integrated version of consistent optical quality. The already polished SoS wafers will be post-processed at the JHU Microfabrication Laboratory and at Boulder Nonlinear Systems. Inc.. to pattern and deposit fast nematic LC in contact with SoS for fast spatial light phase modulation. The prototyped adaptive micro-optical systems will be experimentally demonstrated on various adaptive optics and imaging tasks including laser beam focusing and stabilization for optical communications.
由于光路不均匀性导致的相位畸变严重限制了地对地和空间通信、大气成像、医用激光束聚焦等一大类光学系统的性能。对提高空间分辨率和更大带宽的需求需要一种自适应光学集成方法,在微观尺度上并行调制波前。这种协作努力结合了自适应光学、模拟并行超大规模集成 (VLSI) 微系统、微加工方面的专业知识。和液晶分子系统,创建新一代自适应微光学系统,用于高分辨率波前校正,将超过 10,000 个完全自主的控制元件集成在单个混合系统上光学/电子芯片。自主性对于高带宽操作至关重要,并且是通过直接在片上集成所有自适应功能来获得的。在架构级别,使用任意外部提供的系统度量的并行扰动随机梯度下降优化来实现无模型自适应控制表现。在物理层面,通过将工作频率为千赫兹范围的新型快速向列液晶(LC)集成到自适应控制芯片上,可以实现微尺度分辨率的高速波前控制。具有超薄硅 (UTSi) 晶体管的蓝宝石上硅 (SoS) 技术为高密度光学和电子集成提供了高质量、低噪声、透明的有源介质。我们将研究夹在两个透明 SoS 晶圆之间的 LC 材料的微型结构,实现带有有源电极的相位调制器阵列,并行执行自适应算法。直接与波前连接。架构和技术创新相结合,预计系统性能将超过每秒 108 次控制更新。在速度、密度和成本方面比目前现有的自适应光学系统至少高出 1,000 倍。该计划将研究和教育整合到一系列项目密集型课程中,研究生和本科生团队在其中学习设计。原型并测试自适应光学协处理器,在模拟 VLSI 中实现并通过 MOSIS 制造。自适应协处理器将配置为从外部控制各种快速LC和其他空间光相位调制器,可用于陆军研究实验室(ARL)的实验。此外,我们将利用 Peregrine Semiconductor 提供的全尺寸 UTSi SoS 晶圆(与 Hopkins 进行特殊安排定制制造)来制作具有一致光学质量的完全集成版本的原型。已经抛光的 SoS 晶圆将在 JHU 微加工实验室和博尔德非线性系统公司进行后处理。 Inc. 图案化并沉积与 SoS 接触的快速向列液晶,以实现快速空间光相位调制。原型自适应微光学系统将在各种自适应光学和成像任务中进行实验演示,包括激光束聚焦和光通信稳定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gert Cauwenberghs其他文献

1.1 TMACS/mW Load-Balanced Resonant Charge-Recycling Array Processor
1.1 TMACS/mW负载平衡谐振电荷回收阵列处理器
Bio-plausible Learning-on-Chip with Selector-less Memristive Crossbars
具有无选择器忆阻交叉开关的生物合理片上学习
VLSI potentiostat array for distributed electrochemical neural recording
用于分布式电化学神经记录的 VLSI 恒电位仪阵列
An analog VLSI chip with asynchronous interface for auditory feature extraction
具有异步接口的模拟 VLSI 芯片,用于听觉特征提取
ADC-Less 3D-NAND Compute-in-Memory Architecture Using Margin Propagation
使用裕度传播的无 ADC 3D-NAND 内存计算架构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aswin Chowdary Undavalli;Gert Cauwenberghs;Arun S. Natarajan;S. Chakrabartty;A. Nagulu
  • 通讯作者:
    A. Nagulu

Gert Cauwenberghs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gert Cauwenberghs', 18)}}的其他基金

Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
  • 批准号:
    2208771
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRI: CI-NEW: Trainable Reconfigurable Development Platform for Large-Scale Neuromorphic Cognitive Computing
CRI:CI-NEW:用于大规模神经形态认知计算的可训练可重构开发平台
  • 批准号:
    1823366
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PFI:BIC - Unobtrusive Neurotechnology and Immersive Human-Computer Interface for Enhanced Learning
PFI:BIC - 用于增强学习的低调神经技术和沉浸式人机界面
  • 批准号:
    1719130
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
  • 批准号:
    1317407
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EFRI-M3C: Distributed Brain Dynamics in Human Motor Control
EFRI-M3C:人类运动控制中的分布式大脑动力学
  • 批准号:
    1137279
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SGER: Wireless EEG Brain Interface for Extended Interactive Learning
SGER:用于扩展交互式学习的无线脑电图脑接口
  • 批准号:
    0847752
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Acoustic Target Identification and Localization
声学目标识别和定位
  • 批准号:
    0434161
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Trainable Visual Aids for Object Detection and Identification
用于物体检测和识别的可训练视觉辅助工具
  • 批准号:
    0209289
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Engineering Research and Education in Analog VLSI Parallel Computational Systems
职业:模拟 VLSI 并行计算系统的工程研究和教育
  • 批准号:
    9702346
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于组合策略优化的自适应光学自学习控制模型研究
  • 批准号:
    62305280
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
湍流大气信道下轨道角动量编码量子密钥分发的态依赖衍射及自适应光学校正
  • 批准号:
    62301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光扫描系统中的高速栅格自适应光学技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
联合时序SAR和光学遥感数据的农作物跨地域自适应精准识别
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于活体深层组织超分辨成像的自适应光学结构光照明显微技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of beam-offset optical coherence tomography
光束偏移光学相干断层扫描技术的发展
  • 批准号:
    10666910
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Non-Invasive Functional Assessments for Translational Retinal Therapeutics
视网膜转化治疗的非侵入性功能评估
  • 批准号:
    10654125
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
  • 批准号:
    10721221
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
  • 批准号:
    10572572
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Role of the kappa opioid receptor system in learning and substance use disorders
kappa阿片受体系统在学习和物质使用障碍中的作用
  • 批准号:
    10750800
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了