CAREER: Materials and Processes for Microlithography, Patterning and Surface Modification (Nanoscale)
职业:微光刻、图案化和表面改性(纳米级)的材料和工艺
基本信息
- 批准号:9985196
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-05-01 至 2005-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTCTS-9985196Clifford L. HendersonGeorgia Institute of Technology Microlithography, the process used to print circuit elements inMicroelectronic devices, is the key technology driver for thesemiconductor industry. Current microlithographic technologies arereaching the limits of their resolution (-180 ran) and new materials and processes must be developed to enable continued progress in theindustry. Failure to develop more advanced, higher resolutionpatterning processes would result in a devastating of semiconductordevices. A two pronged approach to solving this problem will be followed by providing a progression of materials processes that can be pattern features down below 100 nm in size. The first part of the projectdeals with research directed at improving current photoresist (the photosensitive polymeric materials) materials to provide higher resolutions. One of the fundamental problems with developing better photoresists and processes based on current materials is the difficulty associated with measuring the physical properties of the photoresist that govern its lithographic performance, i.e. concentration of acid generated due to exposure and diffusivity of this acid in the polymer matrix. Without this knowledge, it is difficult to rationally design improved materials and processes. This work will develop a new, revolutionary technique based on measuring the capacitance of polymer coated interdigitated electrode (IDE) capacitors which can be used for quantifying the extremely small acid concentrations and diffusion of this acid within the photoresist film. This technique will be calibrated against other acid measurement techniques including microtitration methods. The effect of photoresist composition and processing on the accuracy and sensitivity of this technique will be evaluated. The methods and technology developed in this work will be transferred to industry through operations with industry, including a collaboration with SEMATECH (an R&D consortium for the industry). This technique will make it possible for the first time using non-invasive, nondestructive techniques to extract the physical parameters required to develop predictive models for the performance of photoresists. These models can then be used to guide the rational design of improved photoresist materials and processes that will be capable of resoining features as small as 130 nm.The extension of current lithographic photoresist materials and processes is not sufficient to achieve resolutions below approximately 130 nm. To achieve these resolutions it will be necessary to change from current optical exposure systems (193 nm and 248 nm light) to so-called "Next Generation Lithography" tools (157 nm or 13 nm light). This conversion represents a substantial challenge since the current photoresist materials used at higher wavelengths will not function due to their strong absorbance at these vacuum-UV wavelengths. Thus, new photoresist materials and processes must be developed, The goal of the second part of the proposed research is to develop a novel surface imaging photoresist material based on the polymerization of aromatic monomers at solid surfaces using surfacebound photosensitive radical initiators. These materials will enable pattern generation down to molecular length scales. This project will demonstrate the use of such methods to pattern sub-100 nm features and develop a fundamental understanding of the mechanisms and system parameters that control the performance of these materials. The deposition of covalently linked polymer thin films on surfaces allows for the control of the complete physiochemical nature of surfaces over molecular length scales. Thus, in addition to semiconductor applications, these materials have a number of uses in bioengineening, integrated optics, and other areas that will be explored.Four main educational innovations will be pursued: (1) development of new classes, (2) modification of existing courses to include non-traditional interdisciplinary Problems, (3) implementation of internet based teaching and teaching evaluation tools, (4) creation of a diverse, interdisciplinary research experience for students. Some of the specific goals of these activities are to: (1) present students with opportunites to learn about frontier fields for chemical engineers including microelectronics, (2) engage the active participation of thesemiconductor industry in teaching activities, (3) demonstrate the application of fundamental engineering principles in the analysis of non-traditional problems, and (4) strengthen interest and involvement of under-represented groups in microelectronics.
摘要 CTS-9985196Clifford L. Henderson 佐治亚理工学院微光刻技术是用于印刷微电子器件中电路元件的工艺,是半导体行业的关键技术驱动力。 当前的微光刻技术已达到其分辨率的极限(-180 nm),必须开发新材料和工艺以实现行业的持续进步。 如果不能开发出更先进、更高分辨率的图案化工艺,将会对半导体器件造成毁灭性的打击。 解决这一问题的双管齐下的方法是提供一系列材料工艺,这些工艺可以将图案特征尺寸缩小到 100 nm 以下。该项目的第一部分涉及旨在改进当前光刻胶(光敏聚合物材料)材料以提供更高分辨率的研究。 基于当前材料开发更好的光致抗蚀剂和工艺的基本问题之一是难以测量控制其光刻性能的光致抗蚀剂的物理特性,即由于曝光而产生的酸的浓度以及该酸在聚合物基质中的扩散性。 如果没有这些知识,就很难合理地设计改进的材料和工艺。 这项工作将开发一种基于测量聚合物涂层叉指电极(IDE)电容器电容的革命性新技术,该技术可用于量化极小的酸浓度以及该酸在光刻胶膜内的扩散。 该技术将根据其他酸测量技术(包括微量滴定方法)进行校准。 将评估光刻胶成分和加工对该技术的准确性和灵敏度的影响。 这项工作中开发的方法和技术将通过与行业的合作转移到行业,包括与 SEMATECH(行业研发联盟)的合作。这项技术将首次使用非侵入性、非破坏性技术来提取开发光刻胶性能预测模型所需的物理参数。 然后,这些模型可用于指导改进光刻胶材料和工艺的合理设计,这些材料和工艺将能够重构小至 130 nm 的特征。当前光刻光刻胶材料和工艺的扩展不足以实现约 130 nm 以下的分辨率。 为了实现这些分辨率,有必要从当前的光学曝光系统(193 nm 和 248 nm 光)更改为所谓的“下一代光刻”工具(157 nm 或 13 nm 光)。 这种转换带来了巨大的挑战,因为当前在较高波长下使用的光刻胶材料由于在这些真空-紫外波长下具有强吸收性而无法发挥作用。 因此,必须开发新的光刻胶材料和工艺。拟议研究的第二部分的目标是开发一种基于使用表面结合光敏自由基引发剂在固体表面上芳香族单体聚合的新型表面成像光刻胶材料。 这些材料将使图案生成达到分子长度尺度。 该项目将演示如何使用此类方法来图案化亚 100 nm 特征,并加深对控制这些材料性能的机制和系统参数的基本了解。 共价连接的聚合物薄膜在表面上的沉积允许在分子长度尺度上控制表面的完整物理化学性质。 因此,除了半导体应用之外,这些材料在生物工程、集成光学和其他将要探索的领域也有许多用途。将追求四项主要的教育创新:(1)开发新课程,(2)修改现有课程包括非传统的跨学科问题,(3)实施基于互联网的教学和教学评估工具,(4)为学生创造多样化的跨学科研究体验。 这些活动的一些具体目标是:(1)为学生提供了解包括微电子在内的化学工程师前沿领域的机会,(2)让半导体行业积极参与教学活动,(3)展示分析非传统问题的基本工程原理;(4) 加强微电子领域代表性不足群体的兴趣和参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifford Henderson其他文献
Clifford Henderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifford Henderson', 18)}}的其他基金
Conference: 63rd International Conference on Electron, Ion, and Photon Beam Technologies and Nanofabrication (EIPBN); Minneapolis, Minnesota; May 28-31, 2019
会议:第63届电子、离子和光子束技术与纳米加工国际会议(EIPBN);
- 批准号:
1935293 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
- 批准号:
1938893 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Templated Manufacturing of Graphene
EAGER:石墨烯的模板化制造
- 批准号:
1251639 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Characterization and Understanding of the Anomolous Diffusion Behavior in Polymer Ultra-thin Films
聚合物超薄膜中反常扩散行为的表征和理解
- 批准号:
0652032 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Understanding and Exploiting the Transport Behavior of Polymers in Confined Geometries
了解和利用聚合物在受限几何形状中的传输行为
- 批准号:
0700760 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
GOALI: Rational Design of Advanced Photoresist Materials for 193 nm and 157 nm Lithography
目标:193 nm 和 157 nm 光刻先进光刻胶材料的合理设计
- 批准号:
0300467 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
骨固定用超细晶MgO/Mg-Zn-Ca复合材料的短流程制备及耐蚀机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非连续体增强高温钛基复合材料环件烧结-轧制短流程成形及组织调控
- 批准号:52105337
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
短流程制备微纳米级金属碳化物的电化学控制机理研究
- 批准号:51304132
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
纳米增强铝基复合材料复杂构件短流程半固态模锻的基础研究
- 批准号:51364035
- 批准年份:2013
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
基于新颖固定化灌注型大孔硅基功能材料次锕系元素分离新技术新方法
- 批准号:20871103
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
14th International Conference on the Chemistry and Biology of Mineralized Tissues (ICCBMT)
第14届国际矿化组织化学与生物学会议(ICCBMT)
- 批准号:
10682749 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Eradicating Misconceptions about Viruses using Multimodal Trace Data in an Intelligent Game-based Environment across Educational Contexts
在跨教育背景的智能游戏环境中使用多模式跟踪数据消除对病毒的误解
- 批准号:
10664776 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
CAREER: Spatiotemporal Behavior of Stimuli- Responsive Soft Materials in Non-Equilibrium Processes
职业:非平衡过程中刺激响应软材料的时空行为
- 批准号:
2048219 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials
职业:突破复合结构的性能极限:制造工艺和材料的集成建模
- 批准号:
1944633 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Pushing the Performance Limit of Composite Structures: Integrated Modeling of Manufacturing Processes and Materials
职业:突破复合结构的性能极限:制造工艺和材料的集成建模
- 批准号:
2105448 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant