Harmonic Analysis and Hyperbolic Partial Differential Equations

调和分析和双曲偏微分方程

基本信息

  • 批准号:
    9970407
  • 负责人:
  • 金额:
    $ 6.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

DMS-9970407AbstractThe investigator is continuing his research into the behavior ofwave propagation in nonhomogeneous media with "rough" wave speeds.The goal is to obtain estimates of Strichartz and nullform typeon solutions to variable coefficient wave equations underminimal differentiability assumptions on the coefficients.Under current NSF funding, the investigator has shown thatthe Strichartz estimates hold if the curvature tensor of the wavespeed metric is bounded and measurable. The proposed researchincludes extending these results to obtain estimates for bilinearnull-forms of solutions, as well as estimates for eigenfunctionsof the Laplacian on spaces with bounded curvature. The investigatoris also involved in joint work studying the Strichartz and bilinearnullform estimates for waves which reflect from convex obstacles.Previous joint research has obtained such estimates in bounded regions of space-time. The proposed research involves combining these local methods with known energy decay estimates to obtain suchestimates valid globally in space and time. These results are thenbeing applied to establish long time existence for certain nonlinearwave equations on the region exterior to a convex obstacle.The development of techniques to handle partial differential equationswith low regularity coefficients is of both theoretical and practicalinterest. The theoretical interest comes from the study ofnonlinear equations in math and physics, such as Einstein's equationsfor the gravitational field, or the equations of fluid dynamics. A central question for such equations is the "long time" existenceof solutions; that is, showing that solutions do not blow upat some future time. The main technique for doing this is to showthat one can control the size of the nonlinear part of the equationin terms of quantities that are known to remain controlled, suchas the energy of the solution. For Einstein's equations, thisrequires understanding the wave equation with rough wave speeds.The practical importance of such studies is that a theoreticalunderstanding of the propagation of waves in rough media shouldlead to more efficient algorithms for the numerical computationof solutions. Our work involves splitting the solution intoelementary pieces, each of which behaves in a particularly simplemanner. This is analogous to the decomposition of functions intowavelets, much of the modern theory of which was developed tounderstood nonlinear equations of stable-state phenomena. Waveletshave in turn led to simple and stable algorithms for solving such equations, as well as to powerful algorithms in the fields of imageand signal processing.
DMS-9970407摘要研究人员正在继续研究波在具有“粗糙”波速的非均匀介质中传播的行为。目标是在系数的最小可微性假设下获得对变系数波动方程解的 Strichartz 和零型类型的估计。在当前 NSF 下在资金支持下,研究人员证明,如果波速度量的曲率张量有界且可测量,则斯特里查茨的估计成立。拟议的研究包括扩展这些结果以获得双线性零形式解的估计,以及有界曲率空间上拉普拉斯本征函数的估计。研究人员还参与了研究凸障碍物反射波的 Strichartz 和双线性零形式估计的联合工作。之前的联合研究已经在时空有界区域中获得了此类估计。拟议的研究涉及将这些局部方法与已知的能量衰减估计相结合,以获得在空间和时间上全局有效的估计。然后将这些结果应用于凸障碍物外部区域上某些非线性波动方程的长期存在性。开发处理低正则系数偏微分方程的技术具有理论和实际意义。理论兴趣来自对数学和物理非线性方程的研究,例如爱因斯坦的引力场方程或流体动力学方程。此类方程的一个核心问题是解的“长期”存在性。也就是说,表明解决方案不会在未来某个时间崩溃。这样做的主要技术是证明人们可以根据已知保持受控的量(例如解的能量)来控制方程非线性部分的大小。对于爱因斯坦方程,这需要理解具有粗糙波速的波动方程。此类研究的实际重要性在于,从理论上理解波在粗糙介质中的传播应该导致更有效的算法来数值计算解。我们的工作涉及将解决方案分成基本部分,每个部分都以特别简单的方式运行。这类似于将函数分解为小波,其许多现代理论是为了理解稳态现象的非线性方程而发展的。小波反过来又带来了解决此类方程的简单而稳定的算法,以及图像和信号处理领域的强大算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hart Smith其他文献

Hart Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hart Smith', 18)}}的其他基金

Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
  • 批准号:
    1500098
  • 财政年份:
    2015
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
  • 批准号:
    1161283
  • 财政年份:
    2012
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
  • 批准号:
    0654415
  • 财政年份:
    2007
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
FRG Collaborative Proposal: Eigenfunctions of the Laplacian
FRG 合作提案:拉普拉斯算子的本征函数
  • 批准号:
    0354668
  • 财政年份:
    2004
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Hyperbolic Partial Differential Equations
调和分析和双曲偏微分方程
  • 批准号:
    0140499
  • 财政年份:
    2002
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
  • 批准号:
    9622875
  • 财政年份:
    1996
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
  • 批准号:
    9401855
  • 财政年份:
    1994
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: LP Regularity for Nonelliptic Differential Equations
数学科学:非椭圆微分方程的 LP 正则性
  • 批准号:
    9203904
  • 财政年份:
    1992
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8807277
  • 财政年份:
    1988
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
基于异构体水平的母乳N/O-寡糖组HPLC-MSn高通量定性定量分析平台的建立
  • 批准号:
    32371340
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
  • 批准号:
    62301461
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多云多雨条件下亚热带森林物候多样性的遥感监测和成因分析
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
  • 批准号:
    22K03374
  • 财政年份:
    2022
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
  • 批准号:
    21K03269
  • 财政年份:
    2021
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了