Mathematical Sciences: Structured Deformations and the Microgeometry of Continua
数学科学:结构变形和康体佳微观几何
基本信息
- 批准号:9703863
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703863 Owen The proposed research is part of an ongoing project to incorporate into continuum mechanics in a systematic manner the effects of geometrical changes at small length scales. The approach employed here differs from many others, in that it enlarges from the outset the collection of deformations that a body can undergo to include non-classical "structured deformations." The present, "front-end" approach provides flexibility in modelling and gives simple and direct predictions of important phenomena such as yielding, hysteresis, and dissipation for a variety of microstructures. The key mathematical idea employed is that the limit of a sequence of derivatives of functions may differ from the derivative of the limit of the sequence of func- tions. The difference between these two quantities gives a concrete measure of the amount of deformation due to "disarrangements" at small length scales. Existing theories of crystalline solids, liquid crystals, polycrystalline metals, and granular materials introduce measures of such deformations via "internal variables" or "directors", e.g., plastic deformation, molecular orientation, or void fraction. Although these variables have natural physical interpretations, in standard approaches they must be accepted as primitive objects within a theory; for structured deformations, counterparts of these variables can be calculated directly as limits of averages of geometrical changes at the microlevel. The proposed research will provide precise definitions and useful formulas for kinematical quantitities such as "velocity and stretching due to slip" and "velocity and stretching without slip", will achieve new refinements of general balance laws and dissipation inequalities, and will obtain parallel refinements of specific constitutive relations that distinguish one material body from another. A principal challenge faced by applied mathematicians who model complex phenomena such as the bending of a metal bar, t he appearance of contrasting optical fields on a liquid crystal display, and the flow of sand through a hopper is that of incorporating into the mathematical equations the influence of the microscopic structure of each substance. Considerable success has been achieved in individual cases of technological importance, but there is lacking a clear and useful language for systematically including microstructure. As a result, shifting, say, from studies of deformations in a bar to studies of sand flowing through a hopper requires starting nearly from the beginning of the modelling process. The proposed research is part of an ongoing program to provide a new, relatively simple mathematical language that will permit a more efficient and economical procedure for modelling these and other phenomena. The initial successes of this program help to provide simple and useful answeres to questions such as why a paper clip springs back to a complex, curved shape when removed from a stack of papers and does not spring back to the simple, straight shape that it may have assumed early in its manufacture. The proposed research will continue the quest for a more unified and efficient approach toward understanding and predicting complex phenomena based on knowledge of microstructure.
9703863欧文提出的研究是一个正在进行的项目的一部分,该项目旨在以系统的方式将几何变化的效果纳入连续机械。 此处采用的方法与许多其他方法不同,因为它从一开始就扩大了人体可以进行的变形收集,以包括非经典的“结构化变形”。 目前的“前端”方法为建模提供了灵活性,并简单而直接地预测了重要现象,例如屈服,滞后和各种微观结构的耗散。 所采用的关键数学思想是,函数衍生物序列的极限可能与功能序列序列的衍生物有所不同。 这两个数量之间的差异给出了由于在小长度上“混乱”而导致的变形量的具体度量。 现有的晶体固体,液晶,多晶金属和颗粒材料的理论通过“内部变量”或“导管”(例如塑性变形,分子取向或空隙分数)引入了这种变形的度量。 尽管这些变量具有自然的物理解释,但在标准方法中,它们必须被认为是理论中的原始对象。对于结构化变形,可以将这些变量的对应物直接计算为在微观层处的几何变化平均值的限制。 拟议的研究将为运动量定量提供精确的定义和有用的公式,例如“速度和由于滑移引起的延伸”和“速度和伸展,而无需滑动”,将实现一般平衡法律和耗散不平等的新细化,并将获得与另一种物质区与另一种物质主体区分开的特定构型关系的平行精致。 应用数学家面临的主要挑战,他们对复杂现象进行了建模,例如金属棒的弯曲,对比液晶显示器上的光场的外观以及沙子通过料斗的流动是将每种物质微观结构的影响纳入数学方程。 在各个技术重要性的情况下,已经取得了巨大的成功,但是在包括微观结构(包括微观结构)的系统上缺乏清晰且有用的语言。 结果,从钢筋中的变形研究转变为流过料斗的沙子的研究几乎需要从建模过程开始就需要开始。 拟议的研究是一个正在进行的计划的一部分,该计划提供了一种新的,相对简单的数学语言,该语言将允许更有效,更经济的程序来建模这些现象和其他现象。 该程序的最初成功有助于为问题提供简单而有用的答案,例如,当从一堆纸上移除时,纸夹弹簧恢复到复杂的,弯曲的形状,并且不会回到其制造早期可能已经假设的简单,直形的形状上。 拟议的研究将继续寻求一种基于微观结构知识来理解和预测复杂现象的更统一和有效的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Owen其他文献
Hume and the Lockean Background: Induction and the Uniformity Principle
休谟和洛克背景:归纳法和均匀性原理
- DOI:
10.1353/hms.2011.0385 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
David Owen - 通讯作者:
David Owen
“Antisurzhyk” Purism: its Actors, Role, and Motives in Modern Days within the Ukrainian-Russian Language Contact
“反苏日克”纯粹主义:现代乌克兰-俄罗斯语言接触中的参与者、角色和动机
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Takashi Miura;Tika Malla;David Owen;Anthony Tumber;Lennart Brewitz;Michael McDonough;Eidarus Salah;Naohiro Terasaka;Takayuki Katoh;Petra Lukacik;Claire Strain-Damerell;Halina Mikolajek;Martin Walsh;Akane Kawamura;Christopher Schofield;Hiroa;池澤 匠;IKEZAWA Takumi - 通讯作者:
IKEZAWA Takumi
Hume on representation, reason and motivation
休谟论表征、理性和动机
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Rachel Cohon;David Owen - 通讯作者:
David Owen
Homoeopathy: the Science and Art of Dynamic Healing
顺势疗法:动态治疗的科学与艺术
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:1.7
- 作者:
David Owen - 通讯作者:
David Owen
CHAPTER 25 – Anus
第25章-肛门
- DOI:
10.1016/b978-1-4160-3966-2.00025-4 - 发表时间:
2009 - 期刊:
- 影响因子:6
- 作者:
David Owen - 通讯作者:
David Owen
David Owen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Owen', 18)}}的其他基金
MRC Transition Support CSF David Owen
MRC 过渡支持 CSF David Owen
- 批准号:
MR/T031891/1 - 财政年份:2020
- 资助金额:
$ 7.8万 - 项目类别:
Fellowship
The Role of 18kDa Translocator Protein (TSPO) in cellular bioenergetics and microglial activation
18kDa 易位蛋白 (TSPO) 在细胞生物能学和小胶质细胞激活中的作用
- 批准号:
MR/N008219/1 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Fellowship
Structured Deformations and the Microgeometry of Continua
康体佳的结构化变形和微观几何
- 批准号:
0102477 - 财政年份:2001
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
GC/MS and LC/MS in Chemistry, Biology, and Reservoir Ecology Instruction
化学、生物学和水库生态学教学中的 GC/MS 和 LC/MS
- 批准号:
9151365 - 财政年份:1991
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
相似国自然基金
狨猴叫声的结构序列规则及其神经表征
- 批准号:32371085
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
低维Dion-Jacobson钙钛矿相结构调控及其太阳电池性能研究
- 批准号:22309047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向2035年医学科学基金结构性治理的内涵探索
- 批准号:82342001
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:专项项目
基于科学论文论证结构的可循证领域知识体系构建研究
- 批准号:72304137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
近α钛合金中微织构演化规律及“宏区”形成机理研究
- 批准号:52305438
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
- 批准号:
10412800 - 财政年份:2020
- 资助金额:
$ 7.8万 - 项目类别:
HIV self-testing to improve the efficiency of PrEP delivery
HIV 自检可提高 PrEP 交付效率
- 批准号:
10053732 - 财政年份:2018
- 资助金额:
$ 7.8万 - 项目类别:
Structured orientations and planning for future school buildings in the changing age
不断变化的时代中未来校舍的结构化方向和规划
- 批准号:
21360289 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Mathematical Models of Structured Population Dynamics
数学科学:结构化人口动态的数学模型
- 批准号:
9500631 - 财政年份:1995
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Diagnostics in Structured Data and Quality Improvement
数学科学:结构化数据诊断和质量改进
- 批准号:
9505440 - 财政年份:1995
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant