Rational Points on Algebraic Varieties
代数簇上的有理点
基本信息
- 批准号:9700781
- 负责人:
- 金额:$ 6.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wang 9700781 This award funds research into the following two distinct projects. (Project 1) In 1974, S. Lang made a conjecture which connects the geometry (hyperbolicity) of an algebraic variety defined over a number field with the arithmetic (Mordellicity) of the variety. The conjecture is true for curves and subvarieties of Abelian varieties. Little is known for other varieties. Professors Sarnak and Wang have shown that some hypersurfaces yield either a violation of the Hasse principle which is not accounted for by the Brauer--Manin obstruction or a violation of the above Lang's conjecture. Professor Wang will continue to investigate this problem for 0-cycles of degree 1. (Project 2) The densities of rational points on algebraic varieties have been studied extensively. Professor Wang plans to study weak approximation, Brauer--Manin obstruction and the modified Mazur's conjecture on the topology of rational points on the Hurwitz families, and more generally, on Hurwitz spaces. Since every variety is uniformized by Hurwitz spaces, this research will shed light on these problems in the general case. This research falls into the general mathematical field of Number Theory. It concerns the solutions to algebraic equations in whole numbers and generalizations. Number theory is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century, it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
Wang 9700781该奖项将研究资助以下两个不同的项目。 (项目1)在1974年,S。Lang做出了一个猜想,该猜想连接了在数字字段上定义的代数变体的几何(双曲线),并具有该品种的算术(mordellicity)。猜想对于阿贝尔品种的曲线和亚地区是正确的。以其他品种而闻名。萨尔纳克(Sarnak)和王(Wang)教授表明,某些高空产生了违反哈萨(Hasse)原则的行为,这是brauer-manin阻塞或违反上述朗的猜想所无法解释的。 Wang教授将继续研究0学位的0个学位的问题。(项目2)已广泛研究了代数品种上理性点的密度。 Wang教授计划研究弱近似,Brauer-Manin障碍物以及修改后的Mazur对Hurwitz家族的理性观点拓扑的猜想,更普遍地是在Hurwitz空间上。由于每个品种都被Hurwitz的空间统一,因此在一般情况下,这项研究将阐明这些问题。 这项研究属于数量理论的一般数学领域。它涉及整体和概括的代数方程的解决方案。数字理论是数学最古老的分支之一,由于纯粹的审美原因而被追捕了许多世纪。但是,在过去的半个世纪中,它已成为数据传输和处理以及通信系统等领域的不同应用中必不可少的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Lan Wang其他文献
Reliable Multicast Mechanism in WLAN with Extended Implicit MAC Acknowledgment
具有扩展隐式 MAC 确认的 WLAN 中的可靠组播机制
- DOI:10.1109/vetecs.2008.59010.1109/vetecs.2008.590
- 发表时间:20082008
- 期刊:
- 影响因子:0
- 作者:Xiaoli Wang;Lan Wang;Yingjie Wang;Daqing GuXiaoli Wang;Lan Wang;Yingjie Wang;Daqing Gu
- 通讯作者:Daqing GuDaqing Gu
Density and viscosity for the ternary mixture of 1,3,5-trimethyladamantane+1,2,3,4-tetrahydronaphthalene+n-octanol and corresponding binary systems at T=(293.15 to 343.15) K
1,3,5-三甲基金刚烷1,2,3,4-四氢萘正辛醇三元混合物及相应二元体系在T=(293.15至343.15)K时的密度和粘度
- DOI:10.1016/j.jct.2022.10672610.1016/j.jct.2022.106726
- 发表时间:20222022
- 期刊:
- 影响因子:0
- 作者:Xiaomei Qin;Shihao Yang;Jianbo Zhao;Lan Wang;Yingying Zhang;Xiaoyun Qin;Dan LuoXiaomei Qin;Shihao Yang;Jianbo Zhao;Lan Wang;Yingying Zhang;Xiaoyun Qin;Dan Luo
- 通讯作者:Dan LuoDan Luo
Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy
可裂解的多功能靶向混合胶束,具有顺序 pH 触发的 TAT 肽激活功能,可提高抗肝细胞癌功效
- DOI:10.1021/acs.molpharmaceut.7b0040410.1021/acs.molpharmaceut.7b00404
- 发表时间:20172017
- 期刊:
- 影响因子:4.9
- 作者:Jinming Zhang;Yifeng Zheng;Xi Xie;Lan Wang;Ziren Su;Yitao Wang;Kam W. Leong;Meiwan ChenJinming Zhang;Yifeng Zheng;Xi Xie;Lan Wang;Ziren Su;Yitao Wang;Kam W. Leong;Meiwan Chen
- 通讯作者:Meiwan ChenMeiwan Chen
Injury Risk Assessment of Several Crash Data Sets
多个碰撞数据集的伤害风险评估
- DOI:10.4271/2003-01-121410.4271/2003-01-1214
- 发表时间:20032003
- 期刊:
- 影响因子:0
- 作者:Lan Wang;R. Banglmaier;P. PrasadLan Wang;R. Banglmaier;P. Prasad
- 通讯作者:P. PrasadP. Prasad
A new proposal for RSVP refreshes
RSVP 刷新新提案
- DOI:10.1109/icnp.1999.80193110.1109/icnp.1999.801931
- 发表时间:19991999
- 期刊:
- 影响因子:0
- 作者:Lan Wang;A. Terzis;Lixia ZhangLan Wang;A. Terzis;Lixia Zhang
- 通讯作者:Lixia ZhangLixia Zhang
共 431 条
- 1
- 2
- 3
- 4
- 5
- 6
- 87
Lan Wang的其他基金
FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
- 批准号:19523731952373
- 财政年份:2020
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:20237552023755
- 财政年份:2020
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:19401601940160
- 财政年份:2019
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:17435981743598
- 财政年份:2017
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:16297691629769
- 财政年份:2016
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:15122671512267
- 财政年份:2015
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:13444951344495
- 财政年份:2014
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Cooperative AgreementCooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:13089601308960
- 财政年份:2013
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
- 批准号:10076031007603
- 财政年份:2010
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:10400361040036
- 财政年份:2010
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
平动点虚拟刚性编队动力学与控制问题的微分代数研究
- 批准号:62173334
- 批准年份:2021
- 资助金额:53.00 万元
- 项目类别:面上项目
平动点虚拟刚性编队动力学与控制问题的微分代数研究
- 批准号:
- 批准年份:2021
- 资助金额:53 万元
- 项目类别:面上项目
有限域上代数簇的指数和及其应用
- 批准号:12026224
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
有限域上代数簇的指数和及其应用
- 批准号:12026223
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
函数域Fq(T)上代数超曲面有理点的计数
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Rational points on algebraic varieties
代数簇的有理点
- 批准号:RGPIN-2017-03970RGPIN-2017-03970
- 财政年份:2021
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:RGPIN-2017-03970RGPIN-2017-03970
- 财政年份:2020
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
LC特異点に対する複素解析理論の構築および拡張問題に基づく正曲率多様体の研究
基于扩展问题的LC奇点复解析理论构建及正曲率流形研究
- 批准号:19KK034219KK0342
- 财政年份:2020
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Rational Points on Algebraic Varieties
代数簇上的有理点
- 批准号:23719412371941
- 财政年份:2019
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:StudentshipStudentship
Rational points on algebraic varieties
代数簇的有理点
- 批准号:RGPIN-2017-03970RGPIN-2017-03970
- 财政年份:2019
- 资助金额:$ 6.61万$ 6.61万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual