Mathematical Sciences: Geometric Function Theory in Several Complex Variables
数学科学:多复变数的几何函数论
基本信息
- 批准号:9622695
- 负责人:
- 金额:$ 6.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 2000-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Proposal: DMS-9622695 PI: Rosay. Rosay plans to work on several topics in function theory; more specifically, in several complex variables and in partial differential equations. He is presently working with E.L. Stout on the basic question of boundary values in the sense of hyperfunctions, trying to develop a very concrete local intrinsic theory. He is extremely interested in questions related to uniqueness in the Cauchy problem, especially for the Lewy operator and its perturbations. This has of course a link with the study of abstract CR structures. Several questions concerning automorphisms of C^n, and polynomial convexity will also be studied, in particular in collaboration with F. Forstneric. He is presently working on the problem of separating (reducible) analytic sets, in connection with embeddings problems. The field of several complex variables has applications to many areas of mathematics: approximation theory, Fourier analysis, and, most importantly, partial differential equations. This latter area of partial differential equations is of central importance in physics and engineering. In fact, partial differential equations are the natural tool for the study of many processes in physics and engineering; prediction and understanding in physics and design in engineering are often based on partial differential equations. It is thus of great importance to have incisive knowledge of this area. There are many approaches to the study of partial differential equations, but one of the most important approaches is via several complex variables. The cultivation of several complex variables is thus important. The research proposed by Rosay will clarify several issues in several complex variables, and thereby advance partial differential equations. The applications of several complex variables are not as direct and immediate as those of some areas of mathematics. The history of mathematics, however, is replete with examples of mathematical results whose utilitarian valu e was recognized only many years after their basic development. In fact, this is often the case with the best mathematics--mathematics that avoids the esoteric and the frivolous, but is grounded in reality and persistently asks and attempts to answer the most basic and fundamental questions. It is for this reason that mathematics must be regarded as a long term investment.
摘要提案:DMS-9622695 PI:罗赛。 罗赛计划研究函数论的几个主题;更具体地说,在几个复变量和偏微分方程中。 他目前正在与 E.L.斯托特研究了超函数意义上的边界值的基本问题,试图发展一种非常具体的局部本征理论。他对与柯西问题的唯一性相关的问题非常感兴趣,特别是对于路易算子及其扰动。这当然与抽象 CR 结构的研究有关。还将研究有关 C^n 自同构和多项式凸性的几个问题,特别是与 F. Forstneric 合作。 他目前正在研究与嵌入问题相关的分离(可简化)分析集的问题。 多个复变量领域在许多数学领域都有应用:逼近论、傅里叶分析,以及最重要的偏微分方程。偏微分方程的后一个领域在物理学和工程学中至关重要。事实上,偏微分方程是研究物理和工程中许多过程的自然工具。物理学中的预测和理解以及工程中的设计通常基于偏微分方程。 因此,深入了解该领域非常重要。研究偏微分方程的方法有很多,但最重要的方法之一是通过多个复变量。因此,培养几个复杂的变量很重要。罗赛提出的研究将澄清几个复杂变量中的几个问题,从而推进偏微分方程。几个复变量的应用并不像某些数学领域那样直接和直接。然而,数学史上充满了数学结果的例子,这些数学结果的功利价值在其基本发展多年后才被认识到。事实上,最好的数学往往就是这样——避免深奥和琐碎的数学,而是扎根于现实,坚持不懈地提出并试图回答最基本、最根本的问题。正是由于这个原因,数学必须被视为一项长期投资。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Pierre Rosay其他文献
Jean-Pierre Rosay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Pierre Rosay', 18)}}的其他基金
Geometric Function Theory in Several Complex Variables
多复变量的几何函数论
- 批准号:
0457197 - 财政年份:2005
- 资助金额:
$ 6.89万 - 项目类别:
Standard Grant
Geometric Function Theory in Several Complex Variables
多复变量的几何函数论
- 批准号:
0138523 - 财政年份:2002
- 资助金额:
$ 6.89万 - 项目类别:
Standard Grant
Geometric Function Theory in Several Complex Variables
多复变量的几何函数论
- 批准号:
9877194 - 财政年份:1999
- 资助金额:
$ 6.89万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Function Theory in Several Complex Varaiables
数学科学:多个复变量的几何函数论
- 批准号:
9224859 - 财政年份:1993
- 资助金额:
$ 6.89万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Function Theory in Several Complex Variables
数学科学:多复变数的几何函数论
- 批准号:
9025026 - 财政年份:1991
- 资助金额:
$ 6.89万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Function Theory in Several Complex Variables
数学科学:多复变数的几何函数论
- 批准号:
8902540 - 财政年份:1989
- 资助金额:
$ 6.89万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Function Theory in SeveralComplex Variables
数学科学:多复变量的几何函数论
- 批准号:
8800610 - 财政年份:1988
- 资助金额:
$ 6.89万 - 项目类别:
Standard Grant
相似国自然基金
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:52311540127
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:国际(地区)合作与交流项目
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:22311540123
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:国际(地区)合作与交流项目
从电针调节肌-骨内感知平衡机制探索肌骨同治理论科学内涵
- 批准号:82360941
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
- 批准号:52302276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric modeling and Monte Carlo simulations for anisotropic and non-linear deformation of polymeric materials
聚合物材料各向异性和非线性变形的几何建模和蒙特卡罗模拟
- 批准号:
17K05149 - 财政年份:2017
- 资助金额:
$ 6.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large scale parallelization for geometric computation and mathematical optimization
用于几何计算和数学优化的大规模并行化
- 批准号:
16H02785 - 财政年份:2016
- 资助金额:
$ 6.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 6.89万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 6.89万 - 项目类别:
Continuing Grant
Geometric computational approach to solving hard optimization problems: theory and implementation
解决硬优化问题的几何计算方法:理论与实现
- 批准号:
24300002 - 财政年份:2012
- 资助金额:
$ 6.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)