Topics in Neural Networks, Stochastic and Dynamical Systems
神经网络、随机和动态系统主题
基本信息
- 批准号:9626575
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9626575 Burton ABSTRACT Original research is pursued by the investigator and his colleagues on: (i) topics of neural networks, such as feed-forward networks and unsupervised networks, (ii) algorithms to estimate the expected extreme value of a time series given some record of the past, (iii) dynamical and metric properties of various continued fraction type expansions, and (iv) stationary processes and random fields that arise as limits of random substitutions with a view toward random tiling systems. The methods employed are taken from ergodic theory, probability, and statistical physics. This work consists of four topics: (i) mathematical properties of neural networks, (ii) extreme value estimation, (iii) continued fraction algorithms, and (iv) random substitution processes. (i) A neural network is a type of self-programming computer that learns by example, essentially adjusting itself to adapt to its environment. Neural networks--though not yet well understood, mathematically--are already in commercial use in such areas as handwriting readers, DNA classifiers, and financial forecasters. With greater understanding will come more enlightened use. (ii) The investigator and his colleagues are developing extreme value estimation algorithms to help solve an estimation problem needed in the design of structures such as off-shore oil platforms which require a high probability of withstanding storms. Typically, there is limited historical data from which to make these estimates. The algorithms are used to estimate the most powerful storm that is likely to occur in the vicinity of the structure in the next 20 years. (iii) Continued fractions have the property of being the most economical way to approximate a real number by a fraction. They consist of fractions containing fractions containing fractions, etc., etc. The investigator and his colleagues look at these as dynamical systems to study their properties. This work ties together ideas from probability theory, group theory, and flows on surfaces. (iv) The investigator is studying random substitution schemes as they are natural ways of creating strings of symbols with random properties, using a simple recipe. This idea may also be used to generate tilings of the plane or space that have properties of randomness and determinism. The construction begins with a set of tiles (or simple shapes) and decompositions of these tiles so that each piece of each decomposition is a scale replica of one of the original tiles. This procedure is continued, decomposing to finer and finer scales, zooming the scale. This may give models of materials in nature, as has been the case for non-random versions of this procedure.
9626575 Burton ABSTRACT Original research is pursued by the investigator and his colleagues on: (i) topics of neural networks, such as feed-forward networks and unsupervised networks, (ii) algorithms to estimate the expected extreme value of a time series given some record of the past, (iii) dynamical and metric properties of various continued fraction type expansions, and (iv) stationary processes and random fields that arise as随机替换的限制,以朝向随机平铺系统的视图。 所采用的方法取自Ergodic理论,概率和统计物理学。 这项工作包括四个主题:(i)神经网络的数学特性,(ii)极值估计,(iii)持续分数算法和(iv)随机替换过程。 (i)神经网络是一种自我编程的计算机,它以身作则,基本上调整自身以适应其环境。 在数学上,神经网络尚未在手写读者,DNA分类器和财务预报员等领域的商业用途中得到很好的了解。有了更大的了解,将会更加开明。 (ii)研究人员及其同事正在开发极高的价值估计算法,以帮助解决诸如越野油平台之类的建筑物设计中所需的估计问题,这些估计问题需要很高的可能性来承受风暴。 通常,有限的历史数据可以从中得出这些估计。 该算法用于估计未来20年结构附近可能发生的最强大风暴。 (iii)持续的分数具有最经济的方式,即按比例近似实际数字。 它们由包含含有分数等分数的分数组成。研究者及其同事将这些视为研究其特性的动态系统。 这项工作将概率理论,群体理论和在表面上流动的思想联系在一起。 (iv)研究人员正在研究随机替代方案,因为它们是使用简单配方创建具有随机特性的符号字符串的自然方法。 该想法也可以用于生成具有随机性和确定性特性的平面或空间的瓷砖。 构造始于一组瓷砖(或简单的形状)和这些瓷砖的分解,因此每个分解的每一部分都是原始瓷砖之一的比例复制品。 继续此过程,将其分解为更细的尺度,从而缩小量表。 这可能会提供本质上的材料模型,就像此过程的非随机版本一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Burton其他文献
3045 – A REPROGRAMMED THROMBOTIC PLATELET PHENOTYPE IN LIPOEDEMA AND LYMPHOEDEMA
- DOI:
10.1016/j.exphem.2022.07.101 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Scott Cameron;Anu Aggarwal;Annelise Hamer;Suman Guntapalli;Jose Aleman;Xuefeng Li;Robert Burton;akirayii Ademoyo;Crystal Pascual;Matthew Godwin;Jerry Bartholomew;Rohan Bhandari - 通讯作者:
Rohan Bhandari
Cheatgrass Die-Offs: A Unique Restoration Opportunity in Northern Nevada
- DOI:
10.1016/j.rala.2017.09.001 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:
- 作者:
Owen W. Baughman;Robert Burton;Mark Williams;Peter J. Weisberg;Thomas E. Dilts;Elizabeth A. Leger - 通讯作者:
Elizabeth A. Leger
Undetectable IgE Level Associated with Increased Risk of Malignancy
- DOI:
10.1016/j.jaci.2020.12.248 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
John McDonnell;Katherine Weller;Jeff Albert;Fred Hsieh;Robert Burton - 通讯作者:
Robert Burton
THE CUMULATIVE EFFECT OF DIABETES MELLITUS AND CORONARY ARTERY DISEASE ON THE RATE OF ABDOMINAL AORTIC ANEURYSM (AAA) GROWTH
- DOI:
10.1016/s0735-1097(24)04277-3 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Fahad Alkhalfan;Essa Hariri;Habib Layoun;Osamah Badwan;Lorenzo Braghieri;Robert Burton;Rohan Bhandari;Sean Lyden;A. Phillip Owens;Scott J. Cameron - 通讯作者:
Scott J. Cameron
Role of aortic valve replacement in moderate aortic stenosis: a 10-year outcomes study
主动脉瓣置换术在中度主动脉瓣狭窄中的作用:一项为期 10 年的结果研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
E. Hariri;Osamah Z. Badwan;J. Kassab;H. Layoun;Warren Skoza;Robert Burton;Serge C Harb;R. Puri;G. Reed;A. Krishnaswamy;Lars G. Svensson;Samir R. Kapadia - 通讯作者:
Samir R. Kapadia
Robert Burton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Burton', 18)}}的其他基金
Mathematical Sciences: Topics in Probability
数学科学:概率主题
- 批准号:
9103738 - 财政年份:1991
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Travel Request for Workshop on Disordered Systems
数学科学:无序系统研讨会旅行申请
- 批准号:
8603286 - 财政年份:1986
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Ergodic Theory and Probability
数学科学:遍历理论和概率主题
- 批准号:
8600021 - 财政年份:1986
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Ergodic Theory and Probability
数学科学:遍历理论和概率主题
- 批准号:
8301702 - 财政年份:1983
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Ergodic Properties of Loosely Markov Processes
松散马尔可夫过程的遍历性质
- 批准号:
8005172 - 财政年份:1980
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
深度神经网络可解释分析度量及视觉高风险领域应用研究
- 批准号:62372215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
适用于高分辨原子像中氧八面体转动定量分析的深度卷积神经网络构造方法学研究
- 批准号:52301021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
- 批准号:62372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
汉语韵律功能的神经网络损伤与重塑机制研究
- 批准号:82371474
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
EU-Funded