Mathematical Sciences: Oscillatory Integrals and ConvolutionOperators

数学科学:振荡积分和卷积算子

基本信息

  • 批准号:
    9530537
  • 负责人:
  • 金额:
    $ 4.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Oberlin This is a project in Fourier analysis. It is concerned with problems related to certain operators and to certain oscillatory integrals which are naturally associated with those operators. The operators are given by convolution with measures on curves in Euclidean spaces. In the simplest case the oscillatory integrals are one-dimensional integrals with an exponential integrand having polynomial phase function. These integrals arise naturally as the Fourier transforms of the measures defining the convolution operators. The questions of interest here have been fairly well understood in dimensions 2 and 3 since about 1985. The investigator has recently had some success with these problems in 4 dimensions. The goal of this project is to continue that work by extending the range and scope of the methods employed in dimension 4. Pure mathematics is traditionally divided into the areas of analysis, algebra, and topology. This is a project in analysis. Very roughly, the roots of analysis are to be found in calculus. (The roots of algebra are found in high school algebra, and those of topology are in geometry.) The objects of study in calculus are functions, derivatives, and integrals. The derivative of a function is an extremely important tool- when it exists. But not all functions have derivatives. The existence of a function's derivative is tied up with the idea of that function's smoothness. A smoothing operator is a device which transforms a function into a closely related but smoother function. (Applications of mathematics to the real world, e.g., problems in fluid mechanics like airplane design, almost always make the tacit assumption that the functions involved possess a certain degree of smoothness. When, as is often the case, the actual function is not that smooth, it must first be passed through a smoothing operator. Smoothing operators are also extremely useful in communications theory, where they are associated with the processes of noise removal and image enhan cement.) Most smoothing operators are of a type known as convolution operators. The motivation for this project is the desire to understand better certain of these convolution operators. The oscillatory integrals of the title are just tools which aid in this understanding.
摘要 Oberlin 这是傅立叶分析中的一个项目。它涉及与某些算子以及与这些算子自然相关的某些振荡积分相关的问题。算子是通过与欧几里德空间中曲线上的度量进行卷积给出的。在最简单的情况下,振荡积分是具有多项式相位函数的指数被积函数的一维积分。这些积分随着定义卷积算子的度量的傅立叶变换而自然产生。自大约 1985 年以来,这里感兴趣的问题在 2 维和 3 维中已经得到了相当好的理解。研究者最近在 4 维中的这些问题上取得了一些成功。该项目的目标是通过扩展维度 4 中使用的方法的范围和范围来继续这项工作。纯数学传统上分为分析、代数和拓扑领域。这是一个正在分析的项目。粗略地说,分析的根源可以在微积分中找到。 (代数的根源在于高中代数,拓扑的根源在于几何。)微积分的研究对象是函数、导数和积分。 函数的导数是一个极其重要的工具——如果它存在的话。但并非所有函数都有导数。函数导数的存在与该函数的平滑度的概念密切相关。平滑算子是一种将函数转换为紧密相关但更平滑的函数的装置。 (数学在现实世界中的应用,例如飞机设计等流体力学问题,几乎总是默认所涉及的函数具有一定程度的平滑性。而通常情况下,实际函数并不是这样的要平滑,它必须首先通过平滑算子。平滑算子在通信理论中也非常有用,它们与噪声去除和图像增强水泥的过程相关。)大多数平滑算子属于卷积算子类型。该项目的动机是希望更好地理解这些卷积算子中的某些。标题中的振荡积分只是帮助理解这一点的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Oberlin其他文献

Daniel Oberlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Oberlin', 18)}}的其他基金

Some Problems in Analysis
分析中的一些问题
  • 批准号:
    1160680
  • 财政年份:
    2012
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Some Variants of the Kakeya Problem
挂屋问题的一些变体
  • 批准号:
    0552041
  • 财政年份:
    2006
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Affinely Invariant Measures
谐波分析和仿射不变测量
  • 批准号:
    9986804
  • 财政年份:
    2000
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Convolution Estimates and Sobolev Inequalities
数学科学:卷积估计和索博列夫不等式
  • 批准号:
    8922379
  • 财政年份:
    1990
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
  • 批准号:
    8707044
  • 财政年份:
    1987
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
  • 批准号:
    8219327
  • 财政年份:
    1983
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Investigations in Harmonic Analysis
谐波分析研究
  • 批准号:
    7827602
  • 财政年份:
    1979
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Harmonic Analysis on Some Non Locally Convex Function Spaces
一些非局部凸函数空间的调和分析
  • 批准号:
    7602267
  • 财政年份:
    1976
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant

相似国自然基金

战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
大样本宽距双星的统计性质及科学应用
  • 批准号:
    12373033
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    52311540127
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
    22311540123
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
从电针调节肌-骨内感知平衡机制探索肌骨同治理论科学内涵
  • 批准号:
    82360941
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Oscillatory Motion of Collective Self-Propelled Particles
集体自航粒子的振荡运动
  • 批准号:
    16K05486
  • 财政年份:
    2016
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phase description approach to synchronization of oscillatory convection
振荡对流同步的相位描述方法
  • 批准号:
    25800222
  • 财政年份:
    2013
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mathematical Sciences: Oscillatory Integrals, Singular Integrals, and Their Applications
数学科学:振荡积分、奇异积分及其应用
  • 批准号:
    9622979
  • 财政年份:
    1996
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
  • 批准号:
    9505399
  • 财政年份:
    1995
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory Integrals in Harmonic Analysis and Their Applications
数学科学:调和分析中的振荡积分及其应用
  • 批准号:
    9401277
  • 财政年份:
    1994
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了