Mathematical Sciences: Problems in Conservation Laws
数学科学:守恒定律问题
基本信息
- 批准号:9404384
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-15 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9404384 Zumbrun This project concerns the study of nonlinear systems of partial differential equations. It consists of two main programs, in parabolic and hyperbolic conservation laws, respectively. The first project involves the study of stability of waves in viscous conservation laws. This project is intimately connected with the central problems of hyperbolic admissibility and the inviscid limit. Current theory, based on energy methods, remains ad hoc and incomplete. A new, pointwise stability analysis is proposed for the treatment of several open problems, including: Lebesgue integrability behavior, rarefactions, multiple wave patterns, undercompressive and "fake Lax" shocks, weak deflagration waves, multi-dimensional fronts in MHD, and nonuniform convergence of shock capturing schemes. The second project involves refined wave tracing methods for hyperbolic conservation laws. Wave tracing gives a great deal of information about approximate solutions obtained by the Glimm random choice scheme. It is proposed that, by refined accounting techniques, more of this information can be extracted in the limiting process. Previously, decay and convergence to N-waves have been established for nonconvex systems. More recently, existence and decay have been shown for periodic solutions of nxn, nonresonant systems, generalizing the work of Glimm and Lax for 2x2 systems. It is planned to study periodic solutions of nonconvex and of resonant systems, and, ultimately, continuous dependence on initial data. This project deals with equations of applied mathematics. In particular, the equations of continuum mechanics will be study. Emphasis will be placed on the study of stability and convergence of viscous shock and rarefaction waves. The analysis can be applied to real world problems encountered, for example, in gas dynamics. ***
9404384 Zumbrun 该项目涉及偏微分方程非线性系统的研究。它由两个主要程序组成,分别是抛物线和双曲守恒定律。第一个项目涉及粘性守恒定律中波的稳定性研究。该项目与双曲可接纳性和无粘极限的核心问题密切相关。当前基于能量方法的理论仍然是临时的且不完整的。提出了一种新的逐点稳定性分析来处理几个开放问题,包括:勒贝格可积行为、稀疏、多波模式、欠压和“假松弛”冲击、弱爆燃波、MHD 中的多维前沿和非均匀收敛冲击捕捉方案。第二个项目涉及双曲守恒定律的改进波追踪方法。波浪追踪提供了大量关于通过 Glimm 随机选择方案获得的近似解的信息。建议通过改进的会计技术,可以在限制过程中提取更多此类信息。此前,非凸系统的衰减和收敛到 N 波已经被建立。最近,nxn、非谐振系统的周期解的存在和衰变已被证明,概括了 Glimm 和 Lax 对于 2x2 系统的工作。计划研究非凸和谐振系统的周期解,并最终研究对初始数据的连续依赖性。 该项目涉及应用数学方程。特别是,将研究连续介质力学方程。重点研究粘性激波和稀疏波的稳定性和收敛性。该分析可以应用于现实世界中遇到的问题,例如气体动力学。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Zumbrun其他文献
Kevin Zumbrun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Zumbrun', 18)}}的其他基金
Multi-Dimensional and Vorticity Effects in Inclined Shallow Water Flow
倾斜浅水流的多维和涡度效应
- 批准号:
2206105 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Frontiers in Modulation, Dynamics, and Pattern Formation for Hyperbolic, Kinetic, and Convection-Reaction-Diffusion Systems
双曲、动力学和对流-反应-扩散系统的调制、动力学和图案形成前沿
- 批准号:
2154387 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
- 批准号:
1700279 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Stability and dynamics of shock, detonation, and boundary layers
冲击、爆炸和边界层的稳定性和动力学
- 批准号:
0801745 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Laser-Matter Interactions and Highly Nonlinear Geometrical Optics; Dynamics of Reacting Flows
激光与物质相互作用和高度非线性几何光学;
- 批准号:
0505780 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Stability of compressible flow in real media
实际介质中可压缩流的稳定性
- 批准号:
0300487 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Hydrodynamic Stability in viscous, compressible flow
粘性可压缩流中的流体动力学稳定性
- 批准号:
0070765 - 财政年份:2000
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
I. Stability of Waves in Viscous Conservation Laws. II. Phase Transitions and Minimal Surfaces
I. 粘性守恒定律中波的稳定性。
- 批准号:
9706842 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107990 - 财政年份:1991
- 资助金额:
$ 4万 - 项目类别:
Fellowship Award
相似国自然基金
日侧极盖区极光统一模型相关科学问题研究
- 批准号:42374191
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
战略与管理研究类:金属镁产业科学和技术问题研讨会
- 批准号:52342101
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
木质素高值化解聚关键科学问题
- 批准号:22338007
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Teaching and learning to develop the ability to solve problems using algebraic expressions:Analysis of difficulty in understanding and lesson study
教与学培养运用代数表达式解决问题的能力:理解难点分析与课文学习
- 批准号:
21K02573 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual