Mathematical Sciences: Integral Geometry and Analysis on Affine Symmetric Spaces
数学科学:积分几何和仿射对称空间分析
基本信息
- 批准号:9202049
- 负责人:
- 金额:$ 9.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-06-01 至 1995-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gindikin will investigate multidimensional problems in integral geometry and analysis on affine symmetric spaces. The first part of this project will be to construct local inversion formulas and to relate them to the representation theory of Lie groups. The second part of the proposal will consider analysis on homogeneous cones and Siegel domains with an aim towards developing explicit realizations of results from representation theory, including Plancherel measure and spherical functions. The theory of Lie groups, named in honor of the Norwegian mathematician Sophus Lie, has been one of the major themes in twentieth century mathematics. As the mathematical vehicle for exploiting the symmetries inherent in a system, the representation theory of Lie groups has had a profound impact upon mathematics itself and theoretical physics, especially quantum mechanics and elementary particle physics.
Gindikin将研究积分几何形状的多维问题,并分析仿射对称空间。 该项目的第一部分将是构建局部反转公式,并将其与谎言群体的代表理论联系起来。 该提案的第二部分将考虑对均质锥和西格尔领域的分析,目的是旨在从代表理论(包括plancherel测度和球形功能)中对结果进行明确的实现。 以纪念挪威数学家索菲斯谎言而命名的谎言理论一直是20世纪数学的主要主题之一。 作为利用系统固有的对称性的数学工具,谎言组的表示理论对数学本身和理论物理学,尤其是量子力学和基本粒子物理学产生了深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Gindikin其他文献
シンプレクティック写像の不動点のモース指数と安定性
莫尔斯指数与辛映射不动点的稳定性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Simon Gindikin;Ishi Hideyuki;柴山允瑠 - 通讯作者:
柴山允瑠
平面Sitnikov問題における記号力学系と変分構造
平面西特尼科夫问题中的符号动力系统和变分结构
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Simon Gindikin;Ishi Hideyuki;柴山允瑠;Toshikazu Abe and Osamu Hatori;大山 陽介;Ishi Hideyuki;柴山允瑠 - 通讯作者:
柴山允瑠
Simon Gindikin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Gindikin', 18)}}的其他基金
Mathematical Sciences: Complex Integral Geometry and Analysis at Flag Domains
数学科学:复积分几何和标志域分析
- 批准号:
9706836 - 财政年份:1997
- 资助金额:
$ 9.2万 - 项目类别:
Continuing Grant
U.S.-Brazil Cooperative Research: Hyperfunctions in Hypo- Analytic Structures
美国-巴西合作研究:低分析结构中的超功能
- 批准号:
9420743 - 财政年份:1995
- 资助金额:
$ 9.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory and Analysis onHomogeneous Spaces
数学科学:齐次空间的表示论与分析
- 批准号:
9216987 - 财政年份:1992
- 资助金额:
$ 9.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Analysis on Real and P-Adic Lie Groups
数学科学:实李群和 P-进李群分析主题
- 批准号:
9105789 - 财政年份:1991
- 资助金额:
$ 9.2万 - 项目类别:
Continuing Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
New Tools to Measure and Correct Endoplasmic Reticulum Stress in Single Living
测量和纠正单身生活内质网应力的新工具
- 批准号:
7429340 - 财政年份:2007
- 资助金额:
$ 9.2万 - 项目类别:
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
$ 9.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Integral Geometry and Analysis at Flag Domains
数学科学:复积分几何和标志域分析
- 批准号:
9706836 - 财政年份:1997
- 资助金额:
$ 9.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9623269 - 财政年份:1996
- 资助金额:
$ 9.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Construction of Wavelets on Finite Domans and Applications to Boundary Integral Equations
数学科学:有限域上的小波构造及其在边界积分方程中的应用
- 批准号:
9504780 - 财政年份:1995
- 资助金额:
$ 9.2万 - 项目类别:
Standard Grant