Adaptive Solution of Partial Differential Equations on Parallel Computers Using An Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
基本信息
- 批准号:8920694
- 负责人:
- 金额:$ 6.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-04-15 至 1992-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop a software environment where scientists and engineers need not know intricate numerical and programming details in order to efficiently solve computational problems involving partial differential equations on parallel computers. The basic premise is that numerical software consists of two parts: a core which is invariant for a group of related methods designed for different architectures and an architecturally dependent part. Traditional languages tend to cloud common features of the software and interweave the two parts. This project aims at building a new language based on the assertive programming paradigm and at searching for unified principles for designing efficient parallel procedures for solving systems of partial differential equations. In the assertive programming paradigm, computations are specified as sets of assertions about properties of the solution, and not as detailed procedural implementations. Architecture and implementation language-dependent procedures are automatically generated from the assertive description. Assertive programming for parallel scientific processing is supported by equational languages in which assertions are expressed as algebraic equations. In this research, an Equational Programming Language (EPL) system is being built to (i) provide the tools for users to specify parallel numerical algorithms in an architecture-independent way and (ii) develop tools for automatic generation of architecturally dependent parts of those numerical algorithms. Adaptive methods for partial differential equations use local information about the computed solution and its discretization error to automatically refine meshes, redistribute meshes, and/or vary the numerical method in different parts of the problem domain. The project continues the investigation of parallel adaptive techniques for two- and three- dimensional partial differential systems. Particular studies include dynamic scheduling and load balancing techniques based on using local error estimates to predict the work remaining to solve a problem, parallel iterative techniques for algebraic systems, and parallel algorithms for finite quadtree and octree structured meshes. Newly designed procedures will be implemented using the EPL system.
该项目的目的是开发一个软件环境,其中科学家和工程师不需要了解复杂的数值和编程细节,以便有效地解决涉及并行计算机上部分微分方程的计算问题。 基本前提是数值软件由两个部分组成:一个核心,该核心是针对不同架构和架构依赖部分设计的一组相关方法不变的。 传统语言倾向于掩盖软件的共同特征,并将两部分交织在一起。 该项目旨在基于确定的编程范式来构建一种新语言,并旨在寻找统一的原则,以设计有效的并行程序来求解偏微分方程的系统。 在自信的编程范式中,计算被指定为有关解决方案属性的主张集,而不是详细的程序实现。 架构和实现语言依赖性过程是从自信描述中自动生成的。 平行科学处理的自信编程得到了对代数方程式表示主张的方程式语言的支持。 在这项研究中,正在构建一种方程式编程语言(EPL)系统(i)为用户提供工具,使用户以独立于架构的方式指定并行数值算法,并且(ii)开发工具,以自动生成这些数值算法的建筑依赖性部分。 部分微分方程的自适应方法使用有关计算解决方案的本地信息及其离散化误差,以自动改进网格,重新分布网格和/或在问题域的不同部分中使用数值方法。 该项目继续研究了两维部分差分系统的平行自适应技术。 特定的研究包括基于使用局部误差估算的动态调度和负载平衡技术,以预测解决问题的剩余工作,代数系统的平行迭代技术以及有限的Quadtree和Octree结构网格的并行算法。 新设计的过程将使用EPL系统实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Joseph Flaherty其他文献
High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy
来自美国 ITASE(南极洲西部)的高分辨率冰芯:年表的开发和验证以及精度和准确度的确定
- DOI:10.3189/17275640578181331110.3189/172756405781813311
- 发表时间:20052005
- 期刊:
- 影响因子:2.9
- 作者:E. Steig;P. Mayewski;D. Dixon;S. Kaspari;M. Frey;D. Schneider;Stephen A. Arcone;G. Hamilton;V. B. Spikes;M. Albert;D. Meese;A. Gow;C. Shuman;J. White;S. Sneed;Joseph Flaherty;M. WumkesE. Steig;P. Mayewski;D. Dixon;S. Kaspari;M. Frey;D. Schneider;Stephen A. Arcone;G. Hamilton;V. B. Spikes;M. Albert;D. Meese;A. Gow;C. Shuman;J. White;S. Sneed;Joseph Flaherty;M. Wumkes
- 通讯作者:M. WumkesM. Wumkes
共 1 条
- 1
Joseph Flaherty的其他基金
The Pee Dee Scholars: Forging STEM Transfer Success in the Pee Dee Region of South Carolina
皮迪学者:在南卡罗来纳州皮迪地区打造 STEM 转移成功
- 批准号:21303512130351
- 财政年份:2021
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Institutional Collaboration to Recruit, Retain and Graduate Low-Income Students in Biology
合作研究:机构合作招募、留住和毕业低收入生物学学生
- 批准号:17423661742366
- 财政年份:2018
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
CAREER: Identification and Characterization of Genes Involved in Asexual Reproduction in Filamentous Fungi
职业:丝状真菌无性繁殖相关基因的鉴定和表征
- 批准号:08453240845324
- 财政年份:2009
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
IMACS Workshop on Adaptive Methods for Partial Differential Equations
IMACS 偏微分方程自适应方法研讨会
- 批准号:02283090228309
- 财政年份:2002
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
Software for Transient Parallel Adaptive Finite Element Computation
瞬态并行自适应有限元计算软件
- 批准号:97202279720227
- 财政年份:1997
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Continuing GrantContinuing Grant
University - Industry Cooperative Research in Mathematical Sciences: Industry-Based Grad. Research Fellowship for Finite Element Anaylsis of Micro-Electro-Mechanical Systems
数学科学方面的大学-行业合作研究:基于行业的研究生。
- 批准号:95086569508656
- 财政年份:1995
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
Domain Specific Parallel Adaptive Scientific Computation
特定领域并行自适应科学计算
- 批准号:92160539216053
- 财政年份:1993
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Continuing GrantContinuing Grant
Parallel Adaptive Finite Element Methods for Parabolic Partial Differential Equations
抛物型偏微分方程的并行自适应有限元方法
- 批准号:92111489211148
- 财政年份:1992
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
Image Processing and Computing Environments For MathematicalApplications
数学应用的图像处理和计算环境
- 批准号:88059108805910
- 财政年份:1988
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Continuing GrantContinuing Grant
Adaptive Solution of Partial Differential Equations on Parallel Computers Using an Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
- 批准号:86133538613353
- 财政年份:1987
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
- 批准号:32371621
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
- 批准号:82371986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
能力培育项目+FAPESP+基于自然解决方案的城市应对气候变化的韧性和适应性研究
- 批准号:42261144742
- 批准年份:2022
- 资助金额:60.00 万元
- 项目类别:国际(地区)合作与交流项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
- 批准号:72272082
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
激光加速束斑异型化解决方案的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:RGPIN-2017-05811RGPIN-2017-05811
- 财政年份:2022
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:RGPIN-2017-05811RGPIN-2017-05811
- 财政年份:2021
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:RGPIN-2017-05811RGPIN-2017-05811
- 财政年份:2020
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:RGPIN-2017-05811RGPIN-2017-05811
- 财政年份:2019
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:RGPIN-2017-05811RGPIN-2017-05811
- 财政年份:2018
- 资助金额:$ 6.4万$ 6.4万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual