Mathematical Sciences: Boundary Layer Phenomena for Singularly Perturbed Differential-Delay Equations
数学科学:奇异摄动微分时滞方程的边界层现象
基本信息
- 批准号:8713998
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-09-01 至 1989-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is concerned with singularly perturbed nonlinear delay-differential equations with one delay. The objective is to analyze the behavior of periodic solutions for small values of the perturbing parameter and to discuss the boundary layer phenomena that arise on certain intervals of asymptotic length zero. In addition, certain singular systems that can be approximated by finite-difference equations will be investigated from the point of view of singular perturbation. This project is part of ongoing efforts to understand the dynamics of nonlinear delay-differential equations that model many phenomena in optics, physiology and population biology.
所提出的研究涉及具有一延迟的奇异摄动非线性延迟微分方程。 目的是分析小扰动参数值的周期解的行为,并讨论渐近长度为零的某些区间上出现的边界层现象。 此外,还将从奇异摄动的角度研究某些可以用有限差分方程近似的奇异系统。 该项目是理解非线性时滞微分方程动力学的持续努力的一部分,该方程模拟了光学、生理学和群体生物学中的许多现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Nussbaum其他文献
Roger Nussbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Nussbaum', 18)}}的其他基金
Topics in Nonlinear Functional Differential Equations and the Computation of Hausdorff Dimension
非线性泛函微分方程与Hausdorff维数计算专题
- 批准号:
1201328 - 财政年份:2012
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Topics in Nonlinear Functional Differential Equations
非线性函数微分方程主题
- 批准号:
0701171 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Cone-Preserving Operators and Nonlinear Differential-Delay Equations
保锥算子和非线性微分时滞方程
- 批准号:
0401100 - 财政年份:2004
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Topics in Nonlinear Difference and Differential-Delay Equations
非线性差分和微分时滞方程主题
- 批准号:
0070829 - 财政年份:2000
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
U.S.- France Cooperative Research(INRIA): Control of Oscillations
美法合作研究(INRIA):振荡控制
- 批准号:
0001522 - 财政年份:2000
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Boundary Layer Phenomena and Periodic Solutions for Functional Differential Equations
泛函微分方程的边界层现象和周期解
- 批准号:
9706891 - 财政年份:1997
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Solutions for Functional DifferentialEquations
数学科学:泛函微分方程的解
- 批准号:
9401823 - 财政年份:1994
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Nonlinear Functional Differential Equations
数学科学:非线性泛函微分方程的边界层现象
- 批准号:
9105930 - 财政年份:1991
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Functional Differential Equations and Means and Their Iterations
数学科学:泛函微分方程和均值及其迭代的边界层现象
- 批准号:
8903018 - 财政年份:1989
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Functional Analysis
数学科学:非线性泛函分析
- 批准号:
8803495 - 财政年份:1988
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
相似国自然基金
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向论文引用与科研合作的"科学学"规律中的国别特征研究
- 批准号:72374173
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
- 批准号:52342702
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
- 批准号:52302276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The uncanny valley effect induced by a psychological boundary of environment and myself: A challenge of existence proof using a computational approach
环境和我自己的心理边界引起的恐怖谷效应:使用计算方法证明存在的挑战
- 批准号:
16K12518 - 财政年份:2016
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
- 批准号:
0433445 - 财政年份:2005
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Higher Index for Coverings of Manifolds with Boundary
数学科学:有边界流形覆盖的更高指数
- 批准号:
9706858 - 财政年份:1997
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9703842 - 财政年份:1997
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9623251 - 财政年份:1996
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant