喵ID:6c9Qnj

Optical Flow for Rigid Multi-Motion Scenes
Optical Flow for Rigid Multi-Motion Scenes

刚性多运动场景的光流

基本信息

DOI:
--
--
发表时间:
2016
2016
期刊:
International Conference on 3D Vision
International Conference on 3D Vision
影响因子:
--
--
通讯作者:
Jakob Eriksson
Jakob Eriksson
中科院分区:
文献类型:
--
--
作者: Tomas Gerlich;Jakob Eriksson
研究方向: --
MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We observe that in many applications, the motion present in a scene is well characterized by a small number of (rigid) motion hypotheses. Based on this observation, we present rigid multi-motion optical flow (RMM). By restricting flow to one of several motion hypotheses, RMM produces more accurate optical flow than arbitrary motion models. We evaluate an algorithm based on RMM on a novel synthetic dataset, consisting of 12 photo-realistically rendered scenes containing rigid vehicular motion and a corresponding, exact, ground truth. On this dataset, we demonstrate a substantial advantage of RMM over general-purpose algorithms: going from 36% outliers with the DiscreteFlow algorithm, to 26% with ours, with a mean error reduction from 8.4px to 6.9px. We also perform qualitative evaluation on real-world imagery from traffic cameras.
我们观察到,在许多应用中,场景中存在的运动的特征是少数(刚性)运动假设。基于此观察,我们提出了刚性多动光流(RMM)。通过将流量限制在几个运动假设之一中,RMM比任意运动模型产生更准确的光流。我们在新的合成数据集上评估了基于RMM的算法,该数据集由12个真实的渲染场景组成,其中包含刚性车辆运动和相应的,精确的,地面真相。在此数据集上,我们证明了RMM比通用算法的实质优势:从具有离散流算法的36%离群值的转变为26%,平均误差从8.4px降低到6.9px。我们还对交通摄像机的现实世界图像进行定性评估。
参考文献(1)
被引文献(1)
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
DOI:
10.1109/iccv.2015.316
10.1109/iccv.2015.316
发表时间:
2015-01-01
2015-01-01
影响因子:
0
0
作者:
Dosovitskiy, Alexey;Fischer, Philipp;Brox, Thomas
Dosovitskiy, Alexey;Fischer, Philipp;Brox, Thomas
通讯作者:
Brox, Thomas
Brox, Thomas
共 1 条
  • 1
前往